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Summary

Case-parent triad data are considered a robust basis for studying association between variants of a gene and a disease.

Methods evaluating statistical significance of association, like the TDT-test and its extensions, are frequently used.

When there are prior hypotheses of a causal effect of the gene under study, however, methods measuring penetrance

of alleles or haplotypes as relative risks will be more informative. Log-linear models have been proposed as a flexible

tool for such relative risk estimation. We demonstrate an extension of the log-linear model to a natural framework

for also estimating effects of multiple alleles or haplotypes, incorporating both single- and double-dose effects.

The model also incorporates effects of single- and double-dose maternal haplotypes on a fetus during pregnancy.

Unknown phase of haplotypes as well as missing parents are accounted for by the EM algorithm. A number of

numerical improvements to maximum likelihood estimation are also implemented to facilitate a larger number of

haplotypes. Software for these analyses, HAPLIN, is publicly available through our web site. As an illustration we

have re-analyzed data on the MSX1 homeobox-gene on chromosome 4 to show how haplotypes may influence the

risk of oral clefts.

Introduction

Since Falk & Rubinstein (1987) and Self et al. (1991)

proposed that genotypes of parents of cases could be used

to study association between disease and allelic variants,

and Spielman et al. (1993) introduced the transmission

disequilibrium test (TDT), the case-parent triad design

has become an increasingly important approach for asso-

ciation studies. The standard case-parent triad design is

based on selecting case children from a population, and

then genotyping both children and their parents. Since

the case-parent triad design has strengths and weaknesses

that are different from those of the case-control design

(Weinberg & Umbach, 2000), case-triad studies are also

an important method of verification of association de-

tected by case-control studies (NatureGenetics, 1999).

Assessment of replication of association between case-
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Institute of Public Health, P.O. Box 4404 Nydalen, N-0403

Oslo, Norway. Phone: +47 23408241, Fax: +47 23408260.

E-mail: hakon.gjessing@fhi.no

parent and case-control studies requires that a measure

of association (e.g. relative risk) is available from both

designs (Mitchell 2000). A substantial part of the liter-

ature on case-parent triad data is, however, dedicated

to calculating p-values using the TDT-test or related

tests (Clayton, 1999), (Laird, 2000), (Zhao, 2000a,b),

(Dudbridge, 2003), (Horvath, 2004). Attractive meth-

ods based on log-linear models are available for esti-

mation of relative risk for diallelic markers (Weinberg,

1998), (Wilcox, 1998), (Weinberg, 1999b), (Umbach,

2000b). The basis of the log-linear model application is

to list all possible triad genotypes, and applying a log-

linear model for the frequencies of the different triad

types conditional on the child being a case. The log-

linear model has a number of convenient features. First,

it produces relative risk estimates for a single or double

dose of a deleterious allele, rather than just a hypoth-

esis test. Second, it deals with incomplete triad data in

a relatively straightforward manner (Weinberg, 1999a).

Third, it can incorporate other types of effect estimates
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than just the direct effect of the child’s alleles. Gene-

environment interactions as well as effects of maternal

genes can be incorporated (Wilcox, 1998), (Umbach &

Weinberg, 2000b). The basic model is parametrized ei-

ther using a Hardy-Weinberg equilibrium assumption

for the parental generation, or with completely unre-

stricted mating type frequencies.

The possibility of extending the log-linear model to

a situation with multiple alleles at a locus is of par-

ticular relevance. Perhaps the most immediate appli-

cation of this is when studying haplotypes, which are

inherently polymorphic. The ongoing effort of iden-

tifying single nucleotide polymorphisms (SNPs) in the

human genome provides about 15 SNPs for an average-

length functional locus (International SNP map work-

ing group, 2001), (International human genomese-

quencing consortium, 2001). Although 215 = 32, 768

different haplotypes are in principle possible at such a lo-

cus, a fairly small number is actually seen in practice, re-

vealing strong linkage disequilibrium. At present, there

are a number of difficulties with applying the log-linear

model to situations with a potentially vast number of

haplotypes. First, for SNP data with unknown phase

the haplotypes must be reconstructed from parental

data whenever possible, and haplotype frequencies must

be predicted from the model for the remaining triads.

Second, a full model taking into account all possible

genotype effects will contain too many parameters to

be practical. Several of the many haplotypes could con-

ceivably confer an elevated risk, and there could be com-

plex interaction patterns between two haplotypes at the

same locus. Third, a standard application of log-linear

software quickly becomes infeasible, since the number

of possible triads becomes unmanageable even with a

moderate number of SNPs. For instance, 15 SNPs will

produce 1.1 × 1018 possible triads, making a full enu-

meration impossible.

Recently, a related but alternative approach to log-

linear modelling was extended to estimation of rela-

tive risks associated with haplotypes (Cordell, 2004a,

2004b). The approach applies the principle of con-

ditioning on parental mating type (Self et al. 1991),

(Terwilliger & Ott, 1992), (Clayton, 1999), (Sham

& Curtis, 1995), using the case alleles and “pseudo-

controls” constructed from the non-transmitted alleles

(Schaid, 1996, Khoury, 1994). An advantage of the con-

ditioning approach is that it does not depend on assump-

tions about population structure, like Hardy-Weinberg

equilibrium (HWE). Furthermore, the analyses can be

done using conditional logistic regression software. On

the other hand, it is well known that the condition-

ing decreases power in situations where HWE can be

assumed (Knapp et al. 1995). In addition, a direct appli-

cation of the pseudocontrol approach requires discard-

ing triads where transmission is ambiguous, i.e. when

parent-of-origin is unobservable. This problem extends

similarly to SNPs where phase is unknown, leading to

a greater loss of data when many SNPs are involved.

In the present work we extend the log-linear model

to a locus with multiple alleles or haplotypes with un-

known phase. We suggest a parametrization that allows

for reasonable flexibility without attempting to estimate

too many parameters. The model estimates both fetal

single- and double-dose haplotype relative risks for all

haplotypes, using the remaining haplotypes (or alterna-

tively a single haplotype) as reference. It thus also al-

lows an assessment of whether there is a dose-response

pattern, or a recessive or dominant effect. In a simi-

lar fashion, effects of maternal haplotypes are estimated,

and parent-of-origin effects are considered. The model

is based on a full maximum likelihood approach and

standard likelihood ratio tests are available to compare

nested models. We also suggest a number of computa-

tional simplifications that substantially reduce the nu-

merical problems. An example demonstrates how the

model can be applied to estimate haplotype relative risks

of cleft lip or palate for the MSX1 homeobox gene on

chromosome 4, where no deviation from HWE was

seen. Our software, HAPLIN, is developed to estimate

these models. It includes the parametrizations described

in this article for fetal and maternal haplotypes. The EM

(expectation maximization) algorithm is supplemented

with jackknife resampling to estimate standard errors

and confidence intervals. HAPLIN is available from our

web site.

Log-linear Models for a Multi-Allelic Locus
in Hardy-Weinberg Equilibrium

Notation

Consider a single locus with K alleles A1, A2, . . . , AK

and with population allele frequencies p1, p2, . . . , pK .
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Let M , F and C denote the genotypes for the mother,

the father and the child, respectively, and let (M , F)

be the corresponding mating types and (M , F, C)

the triad type. For instance, if M = A1 A2, F = A2 A3

and C = A2 A3 the mating type is written (M, F ) =
(A1 A2, A2 A3) = A1 A2 × A2 A3 and the triad type is

(M, F, C) = (A1 A2, A2 A3, A2 A3). We will follow a

strict ordering in that the first genotype belongs to the

mother and the second to the father. Also, we assume

that the second allele form the mother and the sec-

ond allele from the father are inherited by the child.

Thus, in the triad type (A1 A2, A2 A3, A2 A3) allele A2

comes from the mother and A3 from the father. With

this notational convention, specification of the mating

type (A1 A2, A2 A3) is used to describe the full triad.

Furthermore, let nijkl be the frequency of the triad

type (AiAj, AkAl) in the observed data, 1 ≤ i, j, k, l ≤
K . Note that when all three individuals are heterozygous

for the same two alleles, i.e. i = l �= j = k, only the

sum nijji + njiij can be observed directly from the data,

not the two separate frequencies. However, as long as

no parent-of-origin effects are included, this ambiguity

is irrelevant for the likelihood, and the sum frequency

can be distributed arbitrarily among the two groups.

We will use for instance ni ··· =
∑

j kl ni j kl to denote

summation over indices, and n = n ···· for the total sam-

ple size.

Sampling Model

Let D denote the event that the child has the disease. A

triad is sampled through a case child. The information

nijkl in the observed data thus relates to the triad probabil-

ities P (M, F, C|D), conditional on disease in the child.

Under this conditioning, we assume a Poisson probabil-

ity model for the triad type frequencies nijkl, with ex-

pected cell values proportional to P (M, F, C|D). By a

standard Bayes argument we write

P (M, F, C|D) = P (D|M, F, C)P (M, F, C)/P (D).
(1)

The disease prevalence P(D) enters the model only

as a normalizing constant, unidentifiable due to the

sampling scheme. The triad population frequencies

P (M, F, C) are typically considered “nuisance” param-

eters, whereas the disease penetrance, P (D|M, F, C),

where the effect of genotype on risk is modelled, is an

essential part of the model. We will consider the separate

parts below.

Triad Frequencies

The triad population frequencies can be decomposed as

P (M, F, C) = P (C|M, F )P (M, F ).

The transmission probability part P (C|M, F ) is triv-

ial when assuming Mendelian transmission. The mating

type frequencies P(M , F) are population quantities, de-

pending on population structure, mating pattern etc.

We assume that the population is in Hardy-Weinberg

equilibrium at the locus, thus assuming, among other

things, that there is random mating and no population

stratification. Based on these assumptions, together with

Mendelian transmission, we can express the triad fre-

quencies simply as

P (M, F, C) = P (Ai Aj , Ak Al ) = pi p j pk pl . (2)

Note that this is an assumption about the unselected

population. We do not assume the group of case children

to be in HWE. In fact, if a deleterious effect of the genes

under study exists, the case group will only be in HWE

if the genetic effect is multiplicative (Lee, 2003).

Disease Penetrance

The most important modelling decision lies in how

to represent P (D|M, F, C), i.e. the risk of a child

exhibiting the disease, conditional on the triad geno-

type. The simplest versions appear when we assume in-

formation about the mating type (M , F) is irrelevant

when the child’s genotype C is known. We may then

write P (D|M, F, C) = P (D|C), and focus on how the

genotype of the child directly influences the risk of dis-

ease. However, particularly the maternal genotype M

may be thought to influence the development of the

child as a fetus, and is thus often considered in models

in perinatal epidemiology (Wilcox et al. 1998), (Cordell

et al. 2004b). Furthermore, parent-of-origin effects are

also identifiable from the full triad genotype but not

from the genotype of the child alone. Yet another situ-
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maternal and fetal alleles (Sinsheimer et al. 2003). Fi-

nally, if the gene under study is not the disease gene

itself, nor in very close linkage to it, the genotype of

the child alone may not contain all information relevant

to the allele distribution at the disease locus (Weinberg,

1999b, Cordell, 2004a).

Below, we will consider different possible models for

how the child- and parental genotypes influence the

probability of disease.

Single- and Double-dose Effects

We start by looking at different parametrizations when

we assume the parental genotypes can be disregarded, i.e.

when P (D|M, F, C) = P (D|C) = P (D|AjAl). Let us

for the moment consider only the diallelic situation,

with alleles A
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model; the relative risk obtained when comparing AjAx

individuals with AkAx individuals is Rj/Rk for all Ax,

provided that x �= j, k. That is, the comparison is made

only among heterozygotes; homozygous individuals are

given separate parameters. We see that the A1 A1 ho-

mozygotes can no longer be thought of as a reference

group since they have the risk ηR̃1, which may differ

from the baseline level η. Even when R1 = 1 the param-

eter R̃1 should still be estimated and will usually differ

from 1. The baseline level η corresponds to the risk

of an A1 homozygote only if the multiplicative model

holds. However, A1 still retains its status as reference

allele.

The reason we prefer the reference allele approach

to using A1 homozygotes as a reference group is

that the single dose effects R2, . . . , RK are frequently

more precisely estimated than the double-dose effects

R̃1, . . . , R̃K ; even for the reference allele homozygotes

may be relatively scarce and provide an unstable basis for

a reference level. It should be noted that for the diallelic

situation the two approaches coincide since we cannot

estimate R̃1 separately and must set it equal to one.

The double-dose estimates will provide an impres-

sion of the effect of allele dose on risk. For the effect

of A2 one can compare the estimates R̃1, R2 and R̃2. If

R̃1 ≈ R2 there is a recessive effect of A2, if R2 ≈ R̃2

there is a dominant effect and if R2/R̃1 ≈ R̃2/R2 there

is a dose-response relationship between A1 and A2. For

this reason, it is instructive to create a plot of R̃1 together

with Rj and R̃j for the remaining alleles, j = 2, . . . , K ,

thus enabling an easy visual inspection of possible pen-

etrance patterns. It should be kept in mind, however,

that this depends on A1 being the reference. We cannot

directly evaluate the relationship between, for instance,

A2 and A3 in the same manner without changing the

reference allele.

Reciprocal Reference

In some situations there may not be any natural can-

didates as reference alleles; perhaps there is no precon-

ceived idea about which allele is the wild type and which

allele is deleterious. One might face a situation where,

say, alleles A1, A2 and A3 are neutral whereas A4 is dele-

terious, and none of the alleles A1, A2 and A3 are par-

ticularly more frequent than the others. It would then

seem artificial to choose A1 as reference since this would

result in a comparison only between A4 and A1, whereas

one would prefer to compare A4 with A1, A2 and A3

jointly; this would provide a wider (and thus more sta-

ble) basis for the reference, thus improving power for

the comparison. Additionally, as seen in the previous

subsection, a discussion of penetrance patterns is always

relative to a reference category. It may be more relevant

to ask whether A4 on the average is dominant or reces-

sive relative to the collective of wild type alleles, rather

than to an arbitrarily selected reference allele. This can

be achieved by using a “reciprocal” reference, meaning

that for each allele all the remaining alleles are used as a

joint reference.

Let Pi be the probability of disease for a heterozygous

individual picked at random among individuals with ex-

actly one Ai-allele, and let Pi− be the same probability for

an individual picked at random from all heterozygotes

not having any Ai-alleles. When using the reciprocal ref-

erence we estimate parameters from (3) as before, but

then compute new single- and double-dose estimates

as Fi = Pi/Pi− and F̃ i = ηR̃i /Pi− . Both Pi and Pi−
can be computed from the parameters in (3), up to the

baseline probability η. The unknown η cancels out in

the expressions for Fi and F̃ i . The interpretation of Fi is

then the increase (or decrease) in risk seen when pick-

ing a random heterozygote without the Ai-allele and

replacing one of the alleles with an Ai-allele. For allele

Ai the reference is thus all heterozygotes not carrying

the Ai-allele. Similarly, F̃ i is the change in risk seen

when replacing both alleles with Ai-alleles. Note that

with the reciprocal reference the reference can be in-

terpreted both as a collection of alleles (those different

from Ai) and as a group of individuals (the heterozy-

gotes not carrying Ai). The only disadvantage is that

the reference category depends on which allele is un-

der study. For this parametrization, one may present a

table or plot of both Fi and F̃ i for all alleles. A reces-

sive effect is seen when Fi = 1 and F̃ i is significantly

different from 1. Similarly, Fi = F̃ i indicates a dom-

inant effect, and F̃ i = F 2
i a dose-response. It should

be kept in mind, however, that concepts such as domi-

nance and recessiveness are always relative to a reference,

which in this case is a composite group of alleles. Thus, it

should be seen as an average effect rather than something

absolute.
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The Log-linear Model

For notational convenience we will, in the following,

rewrite the penetrance model (3) as P (D|AjAl) =
ηRjRlR

�
j l

where R�
j l = R�

j when j = l and R�
j l = 1

when j �= l . The two model formulations are equiva-

lent. Let ξijkl = E[nijkl] be the expected (conditional)

frequency of triads of type (AiAj, AkAl). Entering

(2) and (3) into (1), the expected triad frequencies are

ξi j kl = ξ · P ((Ai Aj , Ak Al )|D)

= ξ · pi p j pk pl · Rj Rl · R�
j l (4)

where ξ is a normalizing constant. Due to the multi-

plicative structure we can write

log(ξi j kl ) = X1β1 + X2β2 + X3β3 (5)

where β1 = (log(p1), . . . , log(pK ))T, β2 = (log(R2),

. . . , log (RK ))T, β3 = (log (R�
1), . . . , log (R�

K ))T , and

X1, X2 and X3 are appropriate design matrices of

dimensions K4 × K, K4 × (K − 1) and K4 × K ,

respectively. Note that ξ is incorporated by first

estimating β1 freely, disregarding the restriction∑
i pi = 1, and then recovering the allele frequencies

from pi = exp(β1i )/
∑

j exp(β1 j ), where β 1i are the

components of β1. Thus, assuming a Poisson likelihood

in the maximum likelihood estimation (MLE), this is a

log-linear model where each triad type contributes the

term

ni j kl log ξi j kl − ξi j kl (6)

to the log-likelihood (up to an additive constant), where

ξ ijkl is given in (4).

For the fully multiplicative model, i.e. when R�
j =

1, j = 1, . . . , K , there are explicit solutions to the

likelihood equations (see Appendix), and the risk

parametrization is parallel to that of the gamete-

competition models (Sinsheimer, 2000). When includ-

ing the double-dose effects, the numerical solutions

cease to be completely explicit. Nevertheless, a near-

explicit solution can be found, necessitating the esti-

mation of only one parameter, from which all other

parameter estimates can be computed. In addition, the

EM algorithm provides a simple framework that quite

easily extends the explicit solution for the multiplica-

tive model to the situation where double-dose effects

are included. Both approaches are discussed in detail in

the appendix. For more information about general use

of the EM algorithm in genetics see, e.g., (Sorensen &

Gianola 2002).

Since the model is based on a full maximum likeli-

hood estimation, standard likelihood ratio tests can be

performed to compare nested models. For instance, one

might test whether R�
j = 1 for all j, so that the model

could be reduced to the fully multiplicative one. Simi-

larly, a joint test for effects of maternal alleles (see below)

could be performed, or an overall test for the effect of all

alleles at the locus. All tests are based on the likelihood

ratio, with a chi-squared distribution as the asymptotic

null distribution and using the added number of pa-

rameters in the largest model as the degrees of freedom.

These tests are also valid when the EM algorithm is used

to maximize the likelihood, provided the likelihood is

computed in the original model with unobserved in-

formation. In addition, Wald-based p-values for effects

of individual alleles can be provided, avoiding having

to compute the maximum likelihood estimates for all

submodels.

Effects of Maternal Alleles

For a model including the possible effect of the maternal

alleles, it is natural to use the same parameterization as

for the fetal alleles, and assume that the maternal alleles

have a multiplicative effect in addition to the fetal alleles.

This results in a model

P (D|(Ai Aj , Ak Al )) = η · Rj Rl R
�
j l · Mi Mj M

�
i j , (7)

where the parameters M1, M2, . . . , MK and M�
1 ,

M�
2 , . . . , M�

K have an interpretation similar to their fetal

counterparts.

Recall that our model assumes Hardy-Weinberg

equilibrium/random mating. Inherent in this assump-

tion is the assumption of “mating symmetry” between

the mother and the father, in the sense that the allele

population frequencies are the same for males and fe-

males. Whereas this assumption is likely to be less crit-

ical when studying the effects of fetal alleles, it is cru-

cial when estimating the effect of maternal alleles during

pregnancy. In effect, equation (7) relies on a contrast be-

tween the allele frequencies for the mother and those for

the father when estimating the effect of maternal alleles.

This may be questionable in, for instance, populations
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where a substantial number of marriages are between

males from the local population and female immigrants,

or vice versa.

Other Effects

Under a mild assumption about independence of expo-

sure and child genotype conditional on parental mating

type (Umbach & Weinberg, 2000b), (Thomas, 2000),

interactions between genes and a categorical exposure

variable can be included in the model. Essentially, this

amounts to fitting separate models for each exposure

category, and adds little in terms of computational dif-

ficulties.

Under the assumption that the locus under study is

functionally related to the disease, parent-of-origin ef-

fects can be included (Weinberg, 1999b), (Cordell et al.

2004b). In our setting, we can choose to assign different

effects to the alleles in the child depending on whether

they derive from the mother or the father. This can be

accomplished by, for instance, setting

P (D|(Ai Aj , Ak Al )) = η · R
(M)
j R

(F )
l R�

j l · Mi Mj M
�
i j ,

(8)

the only difference from (7) being that the single-dose

effects Rj, Rl are separated into R
(M)
j and R

(F )
l depend-

ing on whether the allele is derived from the mother

or from the father. The fraction R
(M)
j /R

(F )
j is a mea-

sure of how much higher or lower the risk associated

with allele Aj is, depending on whether it is transmit-

ted from the mother or the father. We should keep in

mind, however, that the model (8) requires knowledge

of parent-of-origin, which is not the case for ambigu-

ous triads. For this reason, the parent-of-origin model

must be combined with the EM algorithm to estimate

the frequency distribution within ambiguous triads, or

for haplotypes with unknown phase. Implementation of

the EM algorithm is described in more detail below.

Other effects, such as the effects of several unlinked

loci and gene-gene interactions, can also be imple-

mented in the log-linear model; we will not go into

details here.

In passing, we also note that specific deviations from

HWE could be modelled. Since both population strat-

ification and inbreeding typically lead to a deficiency

in heterozygotes, one could include a multiplicative pa-

rameter allowing for homozygotes to have a higher fre-

quency in the population than expected from HWE.

This would lead to a model for the triad frequencies of

the form

P (M, F, C) = pi p j p�
i j · pk pl p�

kl

where p�
i i = p�

i has a separate value for each homozy-

gote AiAi, and p�
i j = 1 for the heterozygotes (i �= j ).

We assume random mating in the last generation, al-

though this is not necessary. Models for deviations from

HWE will not be pursued any further in this paper.

Software Implementation

In the diallelic situation it has been shown how the

models can be implemented in standard software for

log-linear modeling (Weinberg et al. 1998). When in-

vestigating multiple gene variants, and in particular hap-

lotypes (as described below), there is a need for dedi-

cated software implementations. The models described

in this paper are part of our software HAPLIN. It com-

putes both relative risks with confidence intervals and

likelihood-ratio and Wald-based p-values for various

tests, and presents results both as tables and as figures.

HAPLIN allows in particular the effects of maternal alle-

les to be included. It also provides estimates of allele- and

haplotype frequencies with confidence intervals. Several

different reference category methods are implemented,

reciprocal reference being the default.

Haplotypes and Missing Information

Estimating Haplotype Relative Risk

The application of the log-linear model to multiple al-

leles described above can now be adapted in a fairly

straightforward manner to the situation with multiple

closely linked markers within a locus, where phase may

be unknown. We will in the following assume that the

markers are so strongly linked that recombination hardly

ever occurs between them in the transmission from par-

ents to child in our triads.

If phase were known, each haplotype could be treated

as a single allele, and estimation could proceed as above.

The problem is thus to deduce phase for all markers

in all three individuals. Recall that for an ambiguous
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Journal compilation C© 2005 University College London



Haplotype Relative Risk for Triad Data

marker, i.e. a marker with triad genotype (AiAj, AjAi),

the parent of origin cannot be deduced, but for all other

types of markers the parent of origin can be deduced.

When looking at a single triad, if all markers were non-

ambiguous we could deduce precisely which alleles were

transmitted from the mother and which from the father

at all markers. All alleles transmitted from the mother

must then constitute a haplotype in the child, and sim-

ilarly those transmitted from the father. We would thus

be able to deduce all six haplotypes in the triad. If one

or more of the markers happen to be ambiguous, they

cannot be linked to the transmitted alleles at the other

markers, and we cannot deduce any of the haplotypes

in the triad. (The only exception to this rule is when an

individual is homozygous at all markers except a single

ambiguous marker.)

Clearly, as the number of markers increases, the num-

ber of triads with at least one ambiguous marker will

increase. Depending on the data this number may soon

become substantial. For instance, in one of our datasets

for cleft lip/palate, for a gene with only two SNPs,

we found that for about 14% of the triads phase could

not be deduced directly (data not shown). As a con-

sequence haplotypes need to be reconstructed statisti-

cally for those triads that contain at least one ambiguous

marker.

The most common way of doing the statistical re-

construction is to use the EM algorithm (Cheng et al.

2003), which is particularly well suited for log-linear

models. The M-step performs the maximization as de-

scribed above for multiple alleles, as if all haplotypes

were known. In the E-step the observed frequencies for

ambiguous triads are redistributed according to values

predicted from the model. Since it is sufficient to re-

construct parent of origin for the ambiguous markers

to enable reconstruction of all haplotypes, a triad with

g ambiguous markers will be represented by 2g possi-

ble different haplotype configurations within that triad,

each with a predicted frequency. (For the sake of conve-

nience, the exceptional cases mentioned above, where

haplotypes can be found even in the presence of am-

biguous markers, can be treated as unknown haplotypes

in the EM algorithm. This only leads to a negligible

reduction in the speed of convergence.)

The well-known drawback of the EM algorithm is

that it does not immediately provide standard error es-

timates for the estimation results. Although standard er-

rors can be computed in each M-step, these do not

account for the extra uncertainty resulting from am-

biguous haplotypes. Several ways of providing the extra

information needed from the EM algorithm to com-

pute correct asymptotic standard errors are described in

Sorensen & Gianola (2002). In HAPLIN, the extra un-

certainty is accounted for by an option to use jackknif-

ing of standard errors (Efron & Tibshirani, 1993). This is

reasonably efficient since the data are in a tabulated for-

mat. The jackknifing requires the removal of each triad,

one at a time. However, for triad types that exist in mul-

tiple copies removal occurs only once, and the resulting

contribution is weighted according to the frequency of

that triad type. Thus, the number of jackknife replica-

tions needed is usually substantially lower than the sam-

ple size. To be explicit, let β denote the combined vector

of (log-transformed) parameters β1, β2 and β3 from (5),

and let β̂i j kl be the estimate obtained when removing

one triad from the nijkl triads of type (AiAj, AkAl) (when

nijkl ≥ 1). The jackknife estimate of the standard error

is then

SEjack(β̂) =

[
n − 1

∑

i j kl ni j kl

(β̂i j kl β̂

2]∑

1
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Missing Parental Genotypes

As shown in Weinberg (1999a), missing genotypic in-

formation on parents can easily be incorporated, again

using the EM algorithm. In fact, since the EM algo-

rithm is already used to identify haplotypes, no extra

steps are needed to account for the missing parental in-

formation. In the E-step, the expectations can be com-

puted with both phase ambiguity and unknown parental

information at the same time. In applications, the possi-

bility of incorporating incomplete triads can be crucial

since parental information, particularly for the father,

may frequently be missing, sometimes leading to a seri-

ous loss of power if the entire triad must be excluded. A

requirement for dealing with missing genotype data in

this manner is that we can assume missingness is inde-

pendent of genotype. For most applications this appears

reasonable.

Example and Interpretation of Parameters

To illustrate use of the log-linear models in a situation

with two markers, we re-analyzed data from a series of

261 case-parent triads of cleft lip or palate with con-

firmed fathers from Norway (Jugessur et al. 2003). The

triads were assayed for two markers in the MSX1 home-

oboxgene on chromosome 4. Marker 1, the MSX1-CA,

was a CA-repeat with four different variants. Marker 2,

MSX1-1.3, was a diallelic SNP. Details of the genetic

assays may be found elsewhere (Lidral et al. 1997, 1998).

Since a previous analysis of MSX1 variants indicated an

association for both types of clefts (Lidral et al. 1998),

our cases constitute a mixed set of both cleft lip and

cleft palate. In this material, genotyping was done only

on triads with genetic material from all family members,

and yielded complete results for all triads. If, as is usu-

ally the case, genotyping had failed for some markers in

some individuals, the incomplete triads could still have

been used as described above. HAPLIN was used for all

computations.

With four alleles at one marker (denoted 1,2,3,4) and

two at the other (1,2) there are eight possible haplotypes,

denoted by 1-1, 1-2, 2-1, . . . ,4-1. Haplotypes 1-1, 2-1

and 3-1 have a total frequency of less than 1% and were

excluded from the analysis. The haplotypes 4-1, 1-2, and

3-2 rarely occur as homozygotes (frequencies 0, 4 and

1, respectively). We thus omitted parameters estimating

double-dose effects of 4-1 and 3-2. We estimated effects

for both fetal and maternal haplotypes simultaneously.

The relative risk estimates for single- and double-dose

of both fetal and maternal haplotypes are presented in

Table 1. All estimates are supplied with 95% confidence

intervals. As an alternative presentation, HAPLIN cre-

ates separate plots for the fetal and maternal effects. The

plot for the fetal effects is shown in Figure 1. All results

are presented with reciprocal reference.

This means that the relative risk (single-dose) esti-

mate corresponding, for instance, to haplotype 4-2, is

interpreted as the risk of disease for a heterozygous in-

dividual carrying one copy of the haplotype, relative to

heterozygotes not having the haplotype. It corresponds

to the Fi-parameters defined earlier. It is seen that, per-

haps somewhat surprisingly, fetal haplotype 4-2 carries

a risk above the other haplotypes, even though this

is by far the most frequent haplotype. The haplotypes

1-2 and 3-2 have slightly protective (although not signif-

icant) effects. The presented double-dose relative risks

are the F̃ i -parameters. For instance, F̃ 4−2 represents the

elevation in risk obtained by starting with a heterozy-

gous individual having no 4-2 haplotype and replacing

both haplotypes with 4-2. Since the double-dose esti-

mate is of the same magnitude as the single dose, this

would suggest that 4-2 has a dominant deleterious effect.

It should be kept in mind, however, that homozygotes

may be too rare to allow an accurate estimate of the

dose effect pattern for all haplotypes. When evaluat-

ing significance it is clear that only haplotype 4-2 has a

(borderline) significant fetal effect with a Wald p-value

of 0.053. The overall likelihood ratio p-value for the

MSX1 locus is 0.78, thus the effect of haplotype 4-2 is

not strong enough to show up on the overall test.

Discussion

We have demonstrated the feasibility of extending the

log-linear model to loci with multiple alleles, and to

loci with multiple haplotypes with unknown phase. In

addition to estimating fetal effects, both for single and

double doses of a haplotype, most other commonly

discussed effects such as the effects of maternal hap-

lotypes, gene-environment interactions and parent-of-

origin can be incorporated, and likelihood ratio tests are
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Table 1 Relative risk estimates for both fetal and maternal haplotypes of the MSX1 homeoboxgene on chromosome 4. Estimates show

the risk of cleft lip or palate for the child when either the child or the mother carries one (single-dose) or two (double-dose) copies of

the haplotype in question. The reference level for each haplotype is heterozygotes without that haplotype. Confidence intervals (95%)

are shown in parentheses. The double dose estimates of haplotypes 4-1 and 3-2 are omitted due to few homozygotes. A separate column

shows the estimated population frequencies of the haplotypes. A graphical representation of the estimates for the fetal haplotypes is

found in Figure 1

Fetal haplotype relative risk Maternal haplotype relative risk

Haplotype Frequency Single-dose Double-dose Single-dose Double-dose

4-1 0.03 (0.02, 0.06) 1.30 (0.63, 2.60) – 0.87 (0.42, 1.80) –

1-2 0.11 (0.08, 0.15) 0.73 (0.47, 1.20) 1.10 (0.36, 3.50) 1.20 (0.76, 1.90) 0.85 (0.10, 6.80)

2-2 0.28 (0.23, 0.33) 1.10 (0.76, 1.60) 1.00 (0.52, 2.00) 0.96 (0.64, 1.40) 0.93 (0.48, 1.90)

3-2 0.07 (0.04, 0.10) 0.64 (0.37, 1.10) – 1.30 (0.76, 2.20) –

4-2 0.51 (0.46, 0.56) 1.60 (1.00, 2.60) 1.60 (0.90, 2.90) 0.73 (0.48, 1.10) 0.84 (0.50, 1.40)

Figure 1 Relative risk estimates for the fetal haplotypes of the MSX1 homeoboxgene

on chromosome 4. Estimates show the risk of cleft lip or palate for a child carrying one

or two copies of the haplotype in question. The horizontal line at 1.00 marks the

reference level, which for each haplotype is a heterozygote without that haplotype. Single

dose estimates are marked with an “×” , double dose estimates with an “◦” . The double

dose estimates of haplotypes 4-1 and 3-2 are omitted due to few homozygotes.

Confidence intervals (95%) are drawn as vertical lines. Numerical results for both fetal

and maternal alleles are shown in Table 1.

available for nested models. As shown in the Appendix,

the multiplicative structure allows for several simpli-

fications of likelihood computations, and this makes

estimation fairly straightforward even with larger-size

problems. It will, however, typically require some ex-

tra programming since standard log-linear software will

have problems with the size of the design matrix. The

log-linear approach is particularly well suited in com-

bination with the EM algorithm, and this makes ex-

tensions like predicting phase of phase-unknown hap-

lotypes and accounting for missing parental information

easy. In particular, the E-step can combine expectation

for both unknown phase and missing parental informa-

tion in the same step. These features are incorporated

into the HAPLIN software.

One of the prominent features of the triad design is

the possibility to control for confounding caused, for in-

stance, by population stratification. To exploit this fully,

the most common approach for triad analyses is to con-

dition on mating type, which represents the “extreme”

C© 2005 The Authors Annals of Human Genetics (2006) 70,382–396 391
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position that most of the relevant information should

be extracted from within-family contrasts, and that

across-family comparisons are more suspect due to un-

known population structure (Sham & Curtis, 1995;

Cordell, 2004a; Cordell et al. 2004b). When assum-

ing HWE, some of this protection against population

stratification is lost, but since transmitted and non-

transmitted alleles are still matched the confounding ef-

fect will be of a less serious nature than in a case-control

study. In addition, only a few instances are known where

population stratification has really been strong enough

to produce such a confounding effect (Schaid, 2002);

(Wacholder et al. 2002). Completely ignoring the

knowledge that a population is homogeneous and most

likely close to HWE will waste information (Knapp et al.

1995), and it is not clear that the extra protection against

confounding is worth the price.

It should be remarked that Hardy-Weinberg equilib-

rium does not have to be taken at its face value. There is

information available from the triad data that may allow

us to test its correctness. For instance, under the models

described above, the non-transmitted allele of the fa-

ther is statistically independent of the transmitted allele

of the father and of the two maternal alleles. A test for

this independence can be included in an analysis. Also,

there is the possibility of testing for HWE, or to some

extent compensating for lack of HWE by including ex-

tra parameters in the model (as described above), thus

offering at least an opportunity to evaluate the impact

of the HWE assumption. For the analysis of the MSX1

homeoboxgene shown in this paper there was no sign

of deviations from the HWE (results not shown).

An added advantage of the triad design over, for in-

stance, the case-control design is the ability to infer

parent-of-origin for many of the transmitted alleles.

This makes it possible to establish phase in many of

the children directly. The children with known phase

are basically those for whom the parent-of-origin can

be deduced for all involved markers. This is usually the

majority of the children when only few markers are in-

volved, and thus estimating unknown phase frequencies

will not be necessary. However, as more markers are

added there may be a substantial number of triads for

which the phase of the fetal haplotypes cannot be de-

termined, and disregarding those triads may lead to an

unacceptable loss of power. The log-linear model in-

cludes these triads in a natural fashion through the EM

algorithm.

In conclusion, the proposed extension of the log-

linear model approach works well for estimation of hap-

lotype effects from case-parent triad data. Both ambigu-

ous haplotypes and incomplete triads may be included

in the analyses. Effect estimates are essential for an as-

sessment of consistency of association with other stud-

ies, for example case-control studies. Estimation of both

single-dose and double-dose effects of haplotypes is im-

plemented in software that is available on the web.

Electronic Database Information

HAPLIN can be downloaded from http://www.

uib.no/smis/gjessing/genetics/software/haplin, toget-

her with examples explaining use and interpretation of

output. It runs in both S-Plus and R; the latter can be

downloaded free of charge (R,2004). HAPLIN runs on

most platforms, is easy to install and requires no previ-

ous knowledge of S-Plus or R. It reads data from several

formats. Most of the log-linear models described in this

paper are implemented.
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Appendix

The Fully Multiplicative Model

In the diallelic situation, Weinberg et al. (1998) show

how the model (4) can easily be implemented using

standard software. As they remark, this can in principle

also be done for a multiple allele situation, by setting

up appropriate design matrices as in (5). For small K ,

in particular the diallelic situation, this is undoubtedly

the easiest alternative since it also computes estimates

for standard errors, and other effects such as effects of

maternal genes and gene-environment interaction are

effortlessly incorporated. However, as K increases the
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size of the design matrices increases dramatically. Since

a data set in practice will be of moderate size, most

cells will be empty for large K . Nevertheless, the empty

cells are not structural zeros and thus have to be included

in the likelihood. In standard software this is not easily

achieved without setting up the full design matrix. For

this reason, we will look at some computational simpli-

fications when K is large. In the following we will assume

that K ≥ 3.

The fully multiplicative model, i.e. the model without

separate double-dose parameters is simple and we will

only sketch the likelihood derivation in the following.

Recall the contribution (6) made by each triad type to

the log-likelihood (up to additive constants). The total

log-likelihood is then

l =
∑
i j kl

[ni j kl log ξi j kl − ξi j kl ], (9)

where ξ ijkl are the expected cell frequencies and nijkl the

observed frequencies, as before. When there are no sep-

arate double-dose parameters, i.e. R�
i = 1 for all i, and

no maternal effects, we write ξijkl = ξ · pipjpkpl · RjRl.

Define λi = piRi and write ξijkl = pipk · λ j λl . Notice

that estimating λi is equivalent to estimating Ri once pi

is estimated. We assume
∑

i pi = 1, and to restrict the

remaining parameters we use
∑

i λi = 1. Expanding the

log-likelihood gives

l =
∑

i

(ni ··· + n ··i ·) log pi

+
∑

i

(n ·i ·· + n ···i ) log λi + n log ξ − ξ.

The estimates for pi and λi can thus be obtained sepa-

rately, and both correspond to simple multinomial esti-

mates, yielding

p̂ i =
ni ··· + n ··i ·

2n
and λ̂i =

n ·i ·· + n ···i
2n

, (10)

thus the allele frequencies are estimated simply by allele

counting over the non-transmitted alleles. In addition,

R̂i =
λ̂i

pi

=
n ·i ·· + n ···i
n i ··· + n ··i ·

,

i.e. the relative risks are

R̂j

R̂i

=
(n · j ·· + n ··· j )(ni ··· + n ··i ·)

(n j ··· + n ·· j ·)(n ·i ·· + n ···i )
.

Incidentally, this relative risk is equal to the odds ratio

of transmitting Aj in preference to Ai in the standard

HHRR (haplotype-based haplotype relative risk) model

context (Terwilliger & Ott, 1992).

When including maternal effects a completely ex-

plicit solution using model (8) still exists when set-

ting R�
i = M�

i = 1 for all i. Introducing new param-

eters αi = piMi, β j = pjMjRj and λl = plPl and the

restrictions
∑

αi =
∑

β j =
∑

λl = 1 we can find

the explicit MLEs p̂k = n ··k·/n, α̂i = ni ···/n, β̂ j =
n · j ··/n and λ̂l = n ···l/n, leading to M̂i = α̂i / p̂ i =
ni ···/n ··i ·, R̂j = n · j ··/n j ··· and P̂l = n ···l/n ··l ·. This re-

sult has a natural interpretation: the allele frequencies

are estimated from the non-transmitted paternal alleles,

which are unrelated to risk. The effect of maternal al-

leles is a contrast between alleles not transmitted from

the mother and alleles not transmitted from the father.

The effect of fetal genes derived from the mother is a

contrast between transmitted and non-transmitted alle-

les from the mother, and finally the effect of fetal genes

derived from the father is a contrast between transmit-

ted and non-transmitted alleles from the father. This

very simple result still requires knowledge of parent-of-

origin, but that is easily overcome by application of the

EM algorithm.

An EM Approach to Estimating

Double-dose Effects

As seen above, when the model is purely multiplicative

simple explicit estimates exist. In the following sub-

sections we will discuss some simplifying approaches

to the estimation when double-dose parameters are

present. We write ξijkl = pipk · λ j λl · R�
j l with λi =

piRi as above, and the log-likelihood is as in (9). For

computational convenience we will now restrict the pa-

rameters assuming
∑

i pi = 1 and ξ = 1. Then all of

the Ri-parameters (or equivalently the λi-parameters)

must be estimated, and so must the R�
j l -parameters. Af-

ter expanding (9), we see that the only part containing

p = (p1, . . . , pk)
T is∑

i j kl

ni j kl [log(pi ) + log(pk)] =
∑

i

(ni ··· + n ··i ·) log(pi ),

just as in the fully multiplicative model (10). The re-

maining part of the log-likelihood can then be summed
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over i and k to obtain∑
j l

[
n · j ·l log

(
λ j λl · R�

j l

)
− λ j λl · R�

j l

]
, (11)

still disregarding additive constants. This is the log-

likelihood of a Poisson model with cell expected values

λ j λl R
�
j l and observed cell frequencies n·j·l. By differ-

entiating with respect to the R�
j -parameters it is seen

that R̂�
j = n · j · j /λ̂

2
j is the MLE for R�

j once λ̂ j has been

found. This is, in fact, the value of R̂�
j that makes the

expected values match the observed perfectly in all cate-

gories with homozygous children ( j = l ). Entering R̂�
j

in (11) yields the remaining∑
j �=l

[n · j ·l log(λ j λl ) − λ j λl ] (12)

of the log-likelihood to be used to estimate the λis. We

will now show how this can be maximized as a part of

the EM algorithm; in the next subsection we will show

that a near-explicit solution can also be found. Observe

that (12) is just the log-likelihood of a fully multiplicative

model, only the diagonal elements ( j = l ) are removed.

If the diagonal elements were included, the MLE would

be attained at λ̂ j = (n · j ·· + n ··· j )/
√

n. In addition, if

the parameters λ j were known the expected numbers

in the diagonal cells in a fully multiplicative model would

be λ2
j . Thus, the actual MLEs for λ j from (12) can be

estimated using an EM algorithm. We completely dis-

regard the actual observed values n · j · j at the diagonal

and say that the full data for the EM algorithm consist

of the observed off-diagonal values n · j ·l together with

unobserved frequencies mj when j = l . The M step is

then to compute λ̂ j = (n · j ·· + n ··· j )/
√

n with n · j · j re-

placed by mj for all j. The E step consists of updating

the expected values of the frequencies conditional on

the observed data, which just amounts to updating mj

to the value λ̂2
j , using the current updates of the param-

eter estimates λ̂2
j .

In summary, the EM algorithm would thus be to first

compute p from the non-transmitted alleles. Next, es-

timate λ as in the fully multiplicative model. Then, re-

place the number of homozygous children by their ex-

pected values λ2
j . The step computing λ is then repeated,

without re-estimating p, and the number of homozy-

gotes expected from the multiplicative model again re-

place the previous expected values. When convergence

is achieved and the estimates p̂ and λ̂ are known, we

compute R̂j = λ̂ j / p̂ j and R̂�
j = n · j · j /λ̂

2
j , where n · j · j

are the original (observed) frequencies.

The advantage of estimating the parameters in the

EM framework is that it can be incorporated with the

EM algorithm necessary to reconstruct missing data or

missing haplotype information. We remark that similar

use of the EM algorithm in tables with missing diagonals

is described, for instance, in Morgan & Titterington

1977.

An Explicit Solution for

the Double-dose Model

Although the EM approach described above is proba-

bly the easiest to implement, for the double-dose model

without maternal effects there is a solution to the max-

imum likelihood estimation which requires no itera-

tions except to estimate a single parameter from a well-

behaved one-dimensional equation. Once this is done,

all other parameters can be computed from this single

estimate. We will give the details of the computations

below since this amounts to an almost completely ex-

plicit solution which is computationally very fast and

places only minimal requirements on memory and other

resources. A similar derivation for non-symmetric tables

is found in (Wagner, 1970).

As shown above, the allele frequencies p are estimated

explicitly from the non-transmitted alleles, and the

Ri and R�
i can always be computed once the λi have

been estimated. To estimate λi, consider again the part

(12) of the likelihood needed to estimate λi. Differen-

tiating with respect to λi we obtain the equation

λ̂2
i − B̂λ̂i + γi /4 = 0

for λ̂i , where we define B =
∑

j λ j , B̂ =
∑

j λ̂ j and

γi = 2(n ·i ·· + n ···i − 2n ·i ·i ), i.e. two times the number

of heterozygous children with one Ai-allele. Notice that

if B̂ were known this is a second-order equation in λ̂i and

it can be solved by the standard formula

λ̂i =
1

2
B̂

{
1 − s i

√
1 − γi /B̂2

}
for all i = 1, 2, . . . , K . Notice that the sign s i = ±1

depends on i . It is not entirely obvious how to pick the

correct sign, but we will derive a simple rule for this

394 Annals of Human Genetics (2006) 70,382–396 C© 2005 The Authors
Journal compilation C© 2005 University College London



Haplotype Relative Risk for Triad Data

below. For the time being, define the functions f i (x) =
s i

√
1 − γi /x2, so that the equation becomes

λ̂i =
1

2
B̂(1 − f i (B̂)). (13)

Thus, the only thing that needs to be computed nu-

merically is B̂. Once this is done, λ̂i can be computed

from (13). To derive an equation for B̂, sum both sides

of (13) over i = 1, . . . , K to get

K − 2 =
∑

i

f i (B̂), (14)

which is easily solved numerically as an equation of B̂.

When B̂ has been obtained, all other parameter esti-

mates are computed as described above.

The only remaining difficulty is how to choose

the sign si. The derivation is somewhat involved, but

the resulting rule is easy to implement. Choose m

such that γm > γi for all i �= m and set M =
√

γm =
max{√γi ; i = 1, 2, . . . , K}. Compute the sum S =∑

i f i (M). The rule is: If S < K − 2, choose s i = +1

for all i. If S > K − 2 then choose sm = −1 but

s i = +1 for all i �= m .

The argument for this rule is as follows. Assume first

that all s i = +1. Then the functions f i(x) are all in-

creasing in x, they are all defined when x ≥ M and

limx→∞ f i(x) = 1. Thus, S =
∑

i f i (M) is the smallest

value attained by
∑

i f i (x), and limx→∞
∑

i f i (x) = K .

Hence, when S < K − 2 equation (14) must have a

unique positive solution B̂ > M. If S > K − 2 it will

not have a solution. However, when choosing sm = −1

but keeping the other signs positive it can be seen that

this will produce a solution. Since each fi (x) is decreas-

ing as a function of γ i it can be deduced that any other

combination of signs will make the sum on the right

hand side of (14) always less than K − 2 , thus never

yielding a solution.
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