

GENTLE INTRODUCTION TO GENETIC EPIDEMIOLOGY

– LECTURE 3 – Anil Jugessur

Senior scientist, Norwegian Institute of Public Health, Oslo

NORBIS GENSTAT-B Course, 30th of May – 3rd of June, 2022

LECTURE OUTLINE

- PART I: Modeling effects
 - Genetic and gene-environmental effects
 - Additive and multiplicative models
- PART II: Modeling effects in family triads
 - Child effects
 - Maternal effects
 - Parent of origin (PoO) effects
 - Interaction of PoO effects by environmental factor (PoOxE)
 - Gene by methylation interaction (GxM) effects

How Do WE DEFINE «EXPOSED» IN GEPI STUDIES?

In essence:

A genetic risk factor is treated as any other epidemiological risk factor.

	Disease	No Disease	Total
Exposed	а	b	a + b
Not Exposed	С	d	c + d
	a + c	b + d	N

Odds ratio = ad/bc

 «Exposed» could represent an environmental risk factor

- E.g., smoking, alcohol, drugs, pollutants, lack of an essential vitamin/micronutrient, etc.
- «Exposed» could also represent a genetic risk factor
 - E.g., presence of a particular allele, genotype or haplotype that increase disease risk.

MODELS OF GENETIC INTERACTION

Additive

Reference: Modified from Passarge (2002). Nature Genetics; 31; 11-12

3 susceptibility loci on 3 different chromosomes contribute to the risk of having a disease.

The additive model assumes an <u>individual</u> <u>effect</u> of each locus

The effects of the 3 loci are simply added.

MODELS OF GENETIC INTERACTION - CONTD..

Multiplicative

Reference: Modified from Passarge (2002). Nature Genetics; 31; 11-12

All three loci are jointly involved (i.e., there is an effect in combination only).

Multiply the individual effect of each locus.

MODELS OF GENETIC INTERACTION - CONTD..

Mixed multiplicative

Reference: Modified from Passarge (2002). Nature Genetics; 31; 11-12

A. In some families: 10q11 + 3p12B. In other families: 10q11 + 19q12

Effects in either combination A or B only

Product of individual effects between 2 loci

- Statistical interaction: One cannot accurately describe the effect of one factor on an outcome of interest without specifying the level (or value) of the other factor.
- Lack of interaction between two factors, in terms of their impact on an outcome of interest, is referred to as «additivity» of the two factors.
 - Departure from additivity \Rightarrow interaction

MODELING GXE INTERACTION - CH. 11

- AN EXAMPLE OF «ADDITIVITY» -

No interaction between the effects of smoking and genotype.

- There is an effect of genotype on risk, but it is independent of nicotine (and vice versa).
- Effect of nicotine is the same regardless of whether the predisposing genotype is present or not (and vice versa).
- Here, we can talk about the effect of the genotype <u>without</u> <u>reference</u> to the effect of nicotine.
- This is an example of «*additivity*».

MODELING GXE INTERACTION - 1ST EXAMPLE OF INTERACTION -

Interaction between the effects of smoking and genotype.

- There is a greater effect of nicotine in the presence of the predisposing genotype
- Here, the effect of nicotine is different depending on the presence/absence of the predisposing genotype (and viceversa)
- One cannot accurately describe the effect of one factor without specifying the level of another factor.
- This is an example of *non-additivity* or *interaction*.

MODELING GXE INTERACTION - 2ND EXAMPLE OF INTERACTION -

Both nicotine and the predisposing genotype must be present.

- Here *both* the environmental factor *and* the genotype must be present to increase risk.
- One cannot accurately describe the effect of one factor without specifying the level of another factor.
- This is another example of *non-additivity* or *interaction*.

MODELING GXE INTERACTION - 3RD EXAMPLE OF INTERACTION -

Predisposing genotype

SEVERAL EFFECTS TO CONSIDER - E.G. FOR PERINATAL DISORDERS -

TWO GENOMES MODERATE FETAL EXPOSURE

Important to examine both fetal and maternal gene-effects:

□ Both mother and fetus can metabolize mother's exposures, thus both can affect fetal environment.

□ Letterio et al. ¹ showed that maternal Tgfb1 could cross the placenta and rescue *Tgfb1*^{-/-} mice.

Popliker et al.² showed that maternal epidermal growth factor (Egf) could be transported to the fetus via the placenta.

1. Letterio et al. (1994). Maternal rescue of transforming growth factor-beta 1 null mice. <u>Science</u> 264: 1936–1938.

2. Popliker et al. (1987). Onset of endogenous synthesis of epidermal growth factor in neonatal mice. *Dev Biol* 119

ESTIMATING FETAL AND MATERNAL GENE-EFFECTS

The offspring-parent triad design allows modeling both maternal and fetal gene-effects without confounding from one another.

Several ways in which a variant allele can <u>increase</u> risk of disease:

1) Only when carried by the fetus \Rightarrow "fetal gene-effect".

- The variant allele will be over-represented in <u>cases</u> vs. <u>biological parents</u>.
- 2) Only when carried by the mother \Rightarrow "maternal gene-effect".
 - The variant allele will be over-represented in <u>case-mothers</u> vs. <u>case-fathers</u>.
- 3) *Both* when carried by the fetus and by the mother.
 - The relative risks for the fetal and maternal contributions can be multiplied together to obtain the joint risk of disease.

ESTIMATING GXE INTERACTION EFFECTS

• A risk-conferring <u>allele A</u> can interact with an <u>environmental agent E</u> as follows:

1) <u>**A**</u> increases risk <u>only</u> when carried by the <u>fetus</u> and, at the same time, the fetus is exposed to <u>**E**</u>.

Positive interactive effect between the child's genotype C and environmental exposure $E \Rightarrow CxE$ effect

2) <u>**A**</u> increases risk <u>only</u> when carried by the <u>mother</u> and, at the same time, the fetus exposed to the environmental agent <u>**E**</u> via the mother.

• An interactive effect between the mother's genotype M and the environmental exposure $E \Rightarrow MxE$ effect

3) Mixed scenarios of the above.

In case-parent triads, GxE interaction is assessed by comparing transmission of riskallele or risk-haplotype to affected offspring in triads of exposed vs. unexposed mothers.

 Statistically significant difference between the two transmissions would suggest a multiplicative interaction.

OPEN O ACCESS Freely available online

PLos one

Maternal Genes and Facial Clefts in Offspring: A Comprehensive Search for Genetic Associations in Two Population-Based Cleft Studies from Scandinavia

Astanand Jugessur^{1,2,9}, Min Shi^{3,9}, Håkon Kristian Gjes<u>in 14,5,5,5,5,5,4,5,5,4,5</u> Clarice Ring Weinberg³, Kaare Christensen⁷, Abee Low OPEN OACCESS Freely available online Nguyen⁵, Lene Christiansen⁷, Andrew Carl Lidral⁹, Jeff

OPEN ORCESS Freely available online

Genetic Determinants of Facial Clefting: Analysis of 357 Candidate Genes Using Two National Cleft Studies from Scandinavia

Haplin

Astanand Jugessur¹[®], Min Shi²[®], Håkon Kristian Gjessing^{3,4}, Rolv Terje Lie^{4,5}, Allen James Wilcox⁶, Clarice Ring Weinberg², Kaare Christensen⁷, Abee Lowman Boyles⁶, Sandra Daack-Hirsch⁸, Truc Nguyen Trung⁵, Camilla Bille⁷, Andrew Carl Lidral⁹, Jeffrey Clark Murray^{7,9}*

PLos one

X-Linked Genes and Risk of Orofacial Clefts: Evidence from Two Population-Based Studies in Scandinavia

Astanand Jugessur^{1,2,*®}, Øivind Skare^{1,3,®}, Rolv T. Lie^{3,4}, Allen J. Wilcox⁵, Kaare Christensen^{6,7,8}, Lene Christiansen⁶, Truc Trung Nguyen⁴, Jeffrey C. Murray⁹, Håkon K. Gjessing^{1,3}

MxF

human genetics

doi: 10.1111/j.1469-1809.2012.00707.x

Application of a Novel Hybrid Study Design to Explore Gene-Environment Interactions in Orofacial Clefts

Øivind Skare^{1.2,*,†}, Astanand Jugessur^{1.3,†}, Rolv Terje Lie^{2,4}, Allen James Wilcox⁵, Jeffrey Clark Murray⁶, Astrid Lunde², Truc Trung Nguyen⁴ and Håkon Kristian Gjessing^{1,2*}

LECTURE OUTLINE

PART I: Modeling effects Genetic and gene-environmental effects Additive and multiplicative models

• PART II: Modeling effects in family triads

- Child effects
- Maternal effects
- Parent of origin (PoO) effects
- Interaction of PoO effects by environmental factor (PoOxE)
- Gene by methylation interaction (GxM) effects

FAMILY-BASED STUDY-DESIGNS

- A «TRIAD» AS UNIT OF ANALYSIS -

AA AA Aa Aa

- A = normal allele
- a = disease-causing allele

Equal #s of **AA** og **Aa** among cases? Test for this asymmetry!

- Mendelian inheritance tells us that allele <u>a</u> and <u>A</u> have an equal chance of being transmitted to the next generation.
- If the variant allele <u>a</u> is associated with disease risk, it will be <u>overrepresented</u> among affected offspring.

Key assumptions for offspring-parent triad design

- 1) Mendelian transmission of alleles
 - Alleles <u>a</u> and <u>A</u> assumed transmitted with equal probability to next generation
 - No differential survival with a given genotype (no survival bias)
- 2) Mating is symmetric with regard to genotype and choice of partner is independent of genotype (i.e., non-assortative mating)
 - Especially relevant when studying parent-of-origin effects!

- 3) In GxE interaction studies, the genotype and environmental exposure are assumed to be independent
 - Distortions may occur if a genetic variant influences the tendency for an individual to be exposed!

Statistical analyses

What can the «case-parent triad» design offer us?

- Estimate the effects of an allele in the fetus, in the mother, and the effects of imprinted genes (parent-of-origin effects).
- ✓ Interaction of an allele with another allele, or with an environmental exposure (*GxG* and *GxE* interactions).
- ✓ Cannot estimate the *main effect* of an exposure with case-parent triads alone
 - \Rightarrow for this we need independent control-parent triads.

Offspring-parent triad design – «Hybrid design»

- Genetic and environmental data collected on 2 groups:
 - Affected offspring and their biological parents (case group)
 - Unaffected offspring and their parents (control group).

- Prerequisites for offspring-parent triad design:
 - It must be possible to obtain DNA from the child's parents
 - Not always possible if disease is typically late-onset e.g., Alzheimers disease
 - More suitable for early-onset diseases

Overview of the 15 possible triad types

M-F C (a-alleles)	* Mating- type	** Probability (H-W)	Probability (Not H-W)	* Mating symmetry ** Choice of partner is
2-2.2	1	p^4	μ_1	and the allele is in HWE
2-1 2	2	$p^{3}(1-p)$	μ_2	
2-1 1	2	$p^{3}(1-p)$	μ_2	
1-2 2	2	<i>p</i> ³ (1- <i>p</i>)	μ_2	
1-21	2	<i>p</i> ³ (1- <i>p</i>)	μ_2	
2-01	3	$p^{2}(1-p)^{2}$	μ3	For e.g., Co///
0-2 1	3	$p^{2}(1-p)^{2}$	μ3	$M_{-}F C \cdot 2_{-}O 1$
1-1 2	4	$p^{2}(1-p)^{2}$	μ_4	
1-1 1	4	$2p^{2}(1-p)^{2}$	2μ ₄	
1-1 0	4	$p^{2}(1-p)^{2}$	μ_4	
1-01	5	$p(1-p)^{3}$	μ ₅	
1-00	5	$p(1-p)^{3}$	μ5	
0-1 1	5	$p(1-p)^{3}$	Jtt 5	
0-1 0	5	$p(1-p)^{3}$	μ ₅	
0-0 0	6	$(1-p)^4$	μ_6	

Source: Wilcox, Weinberg, and Lie (1998). Am J Epidemiol 148;893-901

Case-parent triads – effects of <u>child's</u> alleles

M-F C	Mating	Probability	
(a-alleles)	type	(Not H-W)	
2-22	1	$\mathbf{R}_2 \mu_1$	
2-1 2	2	$\mathbf{R}_2 \mu_2$	
2-1 1	2	$\mathbf{R}_1 \mu_2$	
1-22	2	$\mathbf{R}_2 \mu_2$	
1-2 1	2	$\mathbf{R}_1 \boldsymbol{\mu}_2$	
2-0 1	3	$R_1\mu_3$	
0-2 1	3	$\mathbf{R}_{1}\mu_{3}$	
1-1 2	4	$\mathbf{R}_2\mu_4$	
1-1 1	4	$2\mathbf{R}_{1}\mathbf{\mu}_{4}$	
1-1 0	4	μ4	
1-0 1	5	$\mathbf{R}_1 \mu_5$	
1-00	5	μ_5	
0-1 1	5	$\mathbf{R}_1 \mu_5$	
0-1 0	5	μ5	
0-0 0	6	μ_6	

Assumption: Within each mating type (1-6), the different triad types (M-F C) are equally probable.

R₂ = effect of TWO "a" alleles in the child

 R_1 = effect of **ONE** "a" allele in the child

 μ_1 - μ_6 = unknown frequencies

MAIN IDEA: If the allele is associated with disease, the # of triads of a particular mating type will be increased over the expected.

It is thus important to examine both fetal and maternal gene-effects:

Both mother and fetus can metabolize mother's exposures, thus both can affect fetal environment.

□ Letterio et al. ¹ showed that maternal Tgfb1 was able to cross the placenta and rescue Tgfb1⁻ /- mice.

Popliker et al.² showed that maternal epidermal growth factor (Egf) could be transported to the fetus via the placenta [18].

1. Letterio et al. (1994) Maternal rescue of transforming growth factor-beta 1 null mice. Science 264: 1936–1938.

2. Popliker et al. (1987) Onset of endogenous synthesis of epidermal growth factor in neonatal mice. Dev Biol 119

Child and maternal gene effects

- The offspring-parent triad design allows a straightforward modeling of both maternal and fetal gene-effects without confounding from one another.
- There are several ways in which a variant allele can increase risk
 - 1) The variant allele increases risk only if carried by the fetus.
 - "Fetal gene-effect": The variant allele will be over-represented in the <u>cases</u> compared to the biological parents.
 - 2) The variant allele increases risk *only* if carried by the mother.
 - "Maternal gene-effect": The variant allele will be over-represented in the <u>case</u> mothers compared to the case fathers.
 - 3) The variant allele increases risk *both* when carried by the fetus and by the mother.
 - The relative risks for the fetal and maternal contributions can be multiplied together to obtain the joint risk of disease.

Gene-environmental (GxE) effects - Maternal 1st-trimester smoking as an example -

Interaction with environmental exposure (GxE) – Case-parent triad design –

- Separate triads into "exposed" and "unexposed" groups, and analyze the change in gene-effects across the two strata.
- Compare the transmission of the risk-allele or risk-haplotype to affected offspring in triads of exposed vs. unexposed mothers.
- A statistically significant difference between the two transmissions would suggest a GxE interaction.

Interpretation of a GxE interaction analysis

• A risk-conferring allele can interact with an environmental exposure as follows:

1) The allele increases risk <u>only</u> when carried by the <u>fetus</u> and, at the same time, the fetus is exposed to the environmental agent E.

Here we expect to observe a positive interactive effect between the child's genotype and the environmental exposure – CxE effect

2) The allele increases risk <u>only</u> when carried by the <u>mother</u> and, at the same time, she is exposed to the environmental agent E.

Here we expect to observe a positive interactive effect between the mother's environmental exposure and her genotype – MxE effect

3) Mixed scenarios of the above.

Summary of effects to model/estimate

- Major gene effects
 - Fetal gene effects, C
 - Maternal gene effects, M

- Gene-gene (GxG) interactive effects
 - Interactions between genes in a specific biological pathway
- Gene-environment (GxE) interactive effects
 - Fetal gene ⇔ Maternal exposure CxE
 - Maternal gene ⇔ Maternal exposure *MxE*
- Parent-of-origin (PoO) effects
 - Effect of imprinted genes
 - PoOxE effects

LECTURE OUTLINE

- PART I: Modeling effects
 - Genetic and gene-environmental effects
 - Additive and multiplicative models
- PART II: Modeling effects in family triads
 - Child effects
 - Maternal effects
 - Parent of origin (PoO) effects
 - Interaction of PoO effects by environmental factor (PoOxE)
 - Gene by methylation interaction (GxM) effects

