Design choices in Haplin

DESIGN: CASE-CONTROL

Genotype case children and control children

```
Håkon K. Gjessing (NIPH)
```

EXAMPLE: CASE-CONTROL DESIGN WITH A SINGLE CT SNP

Simplest possible approach:	Cases	Controls
Compare frequencies among	СТ	CC
cases and controls	TT	CC
	TT	TT
• For instance, T may have a	CC	CC
higher frequency among cases	СТ	СТ
than controls	TT	CC
 Use, for instance, logistic 	:	1
regression, three levels: CC, CT,		

TT

EXAMPLE: CASE-CONTROL DESIGN WITH A SINGLE CT SNP

Possible problem:	Cases	Controls
	СТ	CC
Population stratification	TT	CC
 That is, cases and controls may 	TT	TT
come from different	CC	CC
subpopulations	СТ	СТ
Which may cause confounding	TT	CC
between SNP and subpopulation	:	÷

CASE-PARENT TRIAD DESIGN

• Objective:

Detect association between candidate gene and disease

• Sample case child with parents

CASE-PARENT TRIAD DESIGN: TRANSMISSION-DISEQUILIBRIUM TEST (TDT)

Objective:

Detect association between candidate gene and disease

Sample case child with parents

• TDT:

In retrospect: is A_1 transmitted more often than A_2 ? (Conditional on affected child)

• **TDT:** Count transmitted alleles,

use standard χ^2 -test

CASE-PARENT TRIAD DESIGN: HAPLIN MODEL

• Objective:

Detect association between candidate gene and disease

Sample case child with parents

• Haplin model:

Estimate relative risk (RR) with confidence intervals

• Haplin model:

Compute p-values for each RR and for total effect (LRT)

TRIADS: IDENTIFY TRANSMISSION

TRIADS: IDENTIFY TRANSMISSION

"C" from the mother "C" from the father

PSEUDO-CONTROLS

We can, to some extent, think of triads in terms of pseudo-controls (non-transmitted alleles)

CASE TRIAD

Design choices in haplin

DESIGN: TRIAD (TRIO) WITH TIME-TO-EVENT DATA

- Cohort data
- Genotype child and its parents
- Outcome is time-to-event

THE STANDARD COMPARISON: TRIAD VERSUS CASE-CONTROL

WHAT EFFECTS SHOULD WE/CAN WE LOOK FOR?

	Case-triad	Case-control	Time-to-event
Fetal genes	Yes	Yes	Yes
Maternal genes	Yes	_	Yes
Parent-of-origin	Yes	_	Yes
Fetal-maternal interaction	Yes	_	Yes
Main effect of environment	-	Yes	Yes
Gene-environment interaction	Yes	Yes	Yes

NOTE: Gene-environment interaction is possible in all,

but only for the genetic effects available in that design.

CASE-CONTROL DESIGN

Advantages:

- Statistical **Power** is (usually) high
- Estimate Odds Ratio (OR) associated with fetal SNPs and haplotypes
- Estimate Odds Ratio (OR) associated with maternal SNPs and haplotypes
- Estimate environment main effect
- Estimate gene-environment interactions
- Simplest analyses can be done with standard logistic regression software

CASE-CONTROL DESIGN

Disadvantages:

- Population stratification, must be controlled for
- Possible confounding between fetal and maternal genes
- Loss of power when reconstructing haplotypes
- Vulnerable to genotyping errors

CASE PARENT TRIAD (TRIO) DESIGN

Advantages:

- Parents are often easier to recruit than independent controls
- Easy to reconstruct haplotypes
- Easier to detect data problems (Mendelian inconsistencies)
- Estimate Relative Risk (RR) associated with fetal SNPs and haplotypes
- Estimate Relative Risk (RR) associated with maternal SNPs and haplotypes
- Fetal and maternal genes "adjusted" for one another
- Avoid population stratification
- Estimate parent-of-origin effects
- Estimate gene-environment interactions

CASE PARENT TRIAD (TRIO) DESIGN

Disadvantages:

- Power sometimes lower than the case-control design
- No estimate for environment main effect
- Parents may not be available for late onset disease

HYBRID: CASE-PARENT TRIADS + CONTROL-PARENT TRIADS

HYBRID: CASE-PARENT TRIADS + CONTROL-PARENT TRIADS

THREE FUNDAMENTAL HAPLIN DESIGNS

Case-parent triads: design = "triad" Case-control: design = "cc" Hybrid: design = "cc.triad"

NOTE:

Other designs obtained by setting family members missing (NA) in data file:

```
CASE-MOTHER DYADS: design = "triad"

with case fathers missing

CASE-PARENT TRIADS + CONTROL CHILDREN: design = "cc.triad"

with control parents missing
```

CASE-MOTHER DYADS + CONTROL-MOTHER DYADS: design = "cc.triad" with case and control fathers missing

HYBRID: CASE-MOTHER DYADS + CONTROL-MOTHER DYADS

- Mothers often used as case-controls (without children) to test for maternal effects.
- This may result in confounding.
- In Haplin: Use design = "cc.triad", set fathers as missing in file.

Håkon K. Gjessing (NIPH)

Design choices in haplin

HYBRID: CASE-PARENT TRIADS + CONTROL CHILDREN

- Case-parent triad "fortified" with independent controls.
- In Haplin: Use design = "cc.triad", set control parents as missing in file.

WHICH ALLELE ESTIMATES WHICH EFFECT?

