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WHAT IS GENETIC EPIDEMIOLOGY?

In broad terms:

«The application of genetic principles and techniques to 
answering epidemiological questions»

GENETICS EPIDEMIOLOGYGEPI



LOTS OF DEFINITIONS OUT THERE…

Source (book): «Fundamentals of Genetic Epidemiology», Eds. Khoury, Beaty and Cohen. Oxford Press, 1993.

Prof of biostats @ WASH-U.



GROWING CONVERGENCE OF D IFFERENT F IELDS

FAMILIALITY
[DEPENDENCE AMONG RELATIVES]

BIOLOGY

GENETICS

RISK FACTORS

EPIDEMIOLOGY

GENETIC EPIDEMIOLOGY

”Less divergence in terminology and methodology, but an increased
conversation, collaboration and convergence across the fields.”



BUILDING A TEAM
– E . G .  F O R A S T U D Y O F B I R T H D E F E C T S –

D A TA  A N A LY S T S
- EPIDEMIOLOGIST
- STATISTICAL GENETICIST
- BIOSTATISTICIAN
- BIOINFORMATICIAN

T E A M
C L I N I C I A N S
- MEDICAL GENETICIST
- DYSMORPHOLOGIST
- PLASTIC SURGEON
- SPECIALIST NURSE
- SPEECH PATHOLOGIST
- NUTRITIONIST
- GENETIC COUNSELOR
- PEDIATRIC DENTIST

C O M P U TA T I O N A L  S K I L L S
- IT-EXPERT
- DATABASE MANAGER
- DATAMINER

M A N Y  M O R E ! !
- FIELD WORKERS
- VOLUNTEERS
- NGOs

C O R E  B I O L O G I S T S
- HUMAN MOLECULAR GENETICIST
- DEVELOPMENTAL BIOLOGIST
- MOUSE GENETICIST



Reference: Mark McCarthy et al. Nat Genet Rev  | 356 | May 2008 | volume 9

Mendelian disorder vs. Complex trait



WHAT ’S A COMPLEX TRAIT?

T R A I T «Purely environmental»
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Source: Haines & Pericak-Vance (1998). In the book: Approaches to genetic mapping in complex human diseases. Wiley-Liss, Inc. 

Physical, chemical, nutritional

Infectious agents / pathogens

Multiple genes and 
environmental factors

Multiple genes with small 
additive effects

A few genes with large effects

Mendelian / single-gene 
disorders

Abnormal chromosome 
numbers and structural causes

Different categories of disease causation



COMMON FEATURES OF COMPLEX TRAITS

⚫ Unlike Mendelian diseases, complex traits are relatively common

⚫ Heterogeneity at several levels:

 Genetic heterogeneity:

⚫ «locus» and «allelic» heterogeneity

⚫ Incomplete penetrance  not all individuals with the mutant genotype express the 
phenotype

⚫ Effect of a gene can be masked by:

 Phenocopies  an environmentally-caused phenotype mirrors a genetically-caused trait 

 Pleiotropy  the mutant genotype affects different traits or organs

⚫ Complex interactions:

 «gene-gene» and «gene-environment» interactions

⚫ Stochastic effects  random or chance events; biological processes are error-prone!



Source: Maroni (2001). In Molecular and genetic analysis of human traits. Blackwell Science, Inc. 

Mean liability for
each genotype

Recessive allele
‘a’ ses liability

Dominant allele
‘B’ ses liability

Liability is an underlying continuous variable comprising both genetic and 
non-genetic effects. 

FIGURE: An idealized distribution of liability in individuals with various genotypes.

Threshold = value
in the liability that 
determines whether 
a disease will be 
expressed or not.

Anyone with liability
greater than the 
threshold manifests
the disease.

THE CONCEPT OF «L IABILIT Y»



THE CONCEPT OF «HERITABILIT Y» - CH .  1

⚫ Heritability (H2) is the proportion of phenotypic variance (Vp) 
attributable to genetic differences.

⚫ Broad-sense vs. narrow-sense heritability
 Broad-sense heritability is the proportion of variance in a phenotype (Vp) 

attributable to the total genetic variance (Vg). H2=Vg/Vp, where Vp=Vg+Ve

 Narrow-sense heritability is the proportion of Vp attributable to additive 
genetic variance (Va); i.e., H2=Va/Vp

⚫ Additive vs. non-additive genetic effects
 Additive effects: 2 or more genes contribute to a phenotype, or when alleles in 

a single gene combine so that their combined effects on the phenotype are
equal to the sum of their individual effects.

 Non-additive effects can be dominance (Vd) or epistasis (Vi)

⚫ Dominance: The effect of one allele masks the effect of a second allele at 
the same locus; e.g., allele A dominates allele a.

⚫ Epistasis: An allele at one locus affects the expression of another allele at 
a different locus. 



I S T HERE A G EN ETIC B ASIS T O C O MP LEX D ISEASES?

 Study whether the disease clusters in families:
⚫ Familial aggregation studies:

 Relatives share a greater proportion of their alleles
⚫ Affected individuals will tend to cluster in families.

 Reccurence risk measured as relative risk ratio (r)
⚫ r = [risk to relatives of type r] ÷ [Population risk]

 Cannot establish that the disease is hereditary 
⚫ Environmental factors could also cause this clustering!

⚫ Adoption studies:
 If a trait has a genetic influence, the risk of disease 

should be higher in biological relatives than in adopted 
relatives living in the same household.

⚫ Twin studies:
 Compare concordance i MZ vs. DZ twins

⚫ If MZ twins show close to 100% concordance but DZ twins 
show significantly less:  the trait has a strong genetic 
basis.

⚫ If MZ twins shows moderate concordance (40-60%) but 
still significantly higher than DZ twins   both 
environmental and genetic components are likely 
involved in the disease.



I MP O RTAN CE O F S HARED E N V IRO N MEN T !



ASSESSING EVIDENCE OF FAMILIAL AGGREGATION

 «INTER»class correlation

⚫ Involves two different classes of relatives:

 E.g. husband-wife, parent-offspring, brother-
sister, grandparent-grandchild, etc.

 «INTRA»class correlation

⚫ Involves only a single class of relatives:

 E.g. brother-brother, sister-sister, etc.

Usual to look at two types of correlations between 
relative pairs:



AN EXAMPLE

2 scenarios:

 Dataset I:
⚫ Parent-offspring correlation: 0.48 ± 0.04
⚫ Sibling correlation: 0.50 ± 0.04
⚫ Spouse correlation: 0.05 ± 0.07

 Dataset II:
⚫ Parent-offspring correlation 0.22 ± 0.01
⚫ Sibling correlation: 0.39 ± 0.01
⚫ Spouse correlation: 0.15 ± 0.02

Fingerprint data: count the number of 
ridges to explore degree of familiality. 



AN EXAMPLE – CONTD…

 Dataset I:
⚫ Parent-offspring correlation: 0.48 ± 0.04
⚫ Sibling correlation: 0.50 ± 0.04
⚫ Spouse correlation: 0.05 ± 0.07

 Dataset II:
⚫ Parent-offspring correlation 0.22 ± 0.01
⚫ Sibling correlation: 0.39 ± 0.01
⚫ Spouse correlation: 0.15 ± 0.02

 Positive correlation coefficients suggest familial aggregation for this trait

 Strong degree of familiality in Dataset I. 
⚫ Sibling correlation is slightly higher than parent-offspring correlation

 Consistent with siblings sharing more of their environment than parents & offspring

⚫ Don’t see same degree of correlation in the spouse group
 Consistent with a less genetic sharing between spouses.

 In Dataset II, higher spouse correlation may be due to shared spousal 
environment (perhaps some assortative mating..?)

 Overall, there seems to be stronger environmental influences in Dataset II.
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 Linkage studies in families with multiple affected members (‘multiplex’)

⚫ Test for cosegregation of a marker with the disease to see if the genetic marker and 
disease gene are physically linked

⚫ Problematic for complex diseases because of a lack of multiplex families

 Allele-sharing studies in affected relative pairs

⚫ Apply model-free methods on smaller subunits within multiplex families

⚫ «Identity by descent» (IBD) methods

 Knowledge of transmission not required (non-parametric, or model-free)

 Reasonable power to detect genes of fairly modest effects

 Linkage disequilibrium approaches

⚫ Exploit how genetic markers are correlated on chromosomes.

Once we have found evidence for a genetic component:

GENETIC APPROACHES TO INVESTIGATING A COMPLEX TRAIT



L INKAGE STUDIES IN MULTIPLEX FAMILIES

Genomewide linkage analyses can be performed using around 400 microsatellite 
markers distributed with an average spacing of 10 cM for genomewide coverage.  



ALLELE-SHARING STUDIES

Main idea: If affected pairs inherit a particular chromosomal fragment more 
often than would be expected by chance alone – this shows linkage!

2 (25 %)                                       1 (50 %)                                    0 (25 %)
No. of parental alleles shared (% of Mendelian proportion)

Deviations from these expected proportions  evidence of linkage

Source: Thomson and Esposito (1999). Trends Cell Biol. 9(12):M17-20.



 Either case-control or family-based

⚫ Compare marker allele frequencies between a case and a control population

⚫ With family data, non-transmitted parental alleles are used as control alleles. 

 Test for deviations from the expected 50% transmission of an allele from parents to 
offspring.

vs.

L INKAGE D ISEQUILIBRIUM (LD)  APPROACHES

Case (desease)            Control (healthy)



THE CANDIDATE-GENE APPROACH

BIOLOGICAL
PLAUSIBILITY

POSITIONAL
PLAUSIBILITY

ANIMAL
MODEL

CANDIDATE
GENE

IDENTIFY GENETIC VARIATION

DETERMINE GENOTYPE-PHENOTYPE CORRELATION

FUNCTIONAL STUDIES

GENE-GENE (GxG) INTERACTIONS GENE-ENVIRONMENT (GxE) INTERACTIONS



25

Selecting SNPs for candidate-gene analysis

◼ Databases for selection/evaluation of SNPs:
 1000 Genomes, e!Ensembl, UCSC’s genome browser, and dbSNP, etc..

◼ Criteria for prioritizing SNP selection:
 Prior association with the trait being studied
 Minor allele frequency (MAF) of at least 5% to capture common variants
 Preference for coding SNPs and SNPs in regulatory regions – functional!
 SNPS with «haplotype-tagging» properties
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SNP custom-assay and genotyping

◼ SNP assays can be designed by ILLUMINA™
 A customized full panel of X number of SNPs in Y number of candidate genes.

◼ Outsource the genotyping (and QC) to a core facility: e.g Microarray
facility (Oslo), Sanger Institute (UK), DeCode genetics (Iceland), etc..

Illumina iScan system                 E.g. of genotype calling            Genomics Core facility Oslo                  
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Data Quality Control (Prelude to Marc’s lecture on Tuesday)

◼ Assess within/between plate genotype reproducibility
 SNP is deemed to have failed if <95% of samples generate a 

genotype at the locus

◼ Exclude all SNPs with MAF <1%.
 Low statistical power in association analysis

◼ Remove all SNPs that show deviation from HWE.
 Systematic genotyping errors, sample mix-ups, latent 

population substructure, or a biological effect (e.g., natural 
selection).

◼ Screen for Mendelian inconsistencies within families.
 Sample switches or misidentified paternity/maternity

?? ??Ok!



G EN O ME- WIDE A SSSO CIATIO N S TUDIES – C H .4

◼ Hypothesis-free (agnostic) compared to candidate-gene approach
 Looks for association across the entire genome using high-resolution

SNP arrays (0.5-2.5 mill).

◼ What have we learnt?
◼ Many association signals are not in genes previously thought to be 

associated with the disease.
◼ Some associations are in areas that weren’t even known before.

 Provide new insights into biology and disease mechanism☺

Signals in «gene deserts»:
Prostate cancer; CL/P 8q24
Crohn’s disease 5p13.1; 1q31.2; 10p21

Signals in common (pleiotropy):
Diabetes/CHD/Melanoma CDKN2A/2B
Prostate/breast/colon cancers; CL/P 8q24
Crohn’s disease/Psoriasis IL23R
Crohn’s disease/T1DM PTPN2



NHGRI GWA Catalog at www.genome.gov/GWAStudies
Other useful sites that catalog GWAS (interactive): https://www.ebi.ac.uk/gwas/

Published GWAS through Dec 2012 at p≤5X10
-8

for 17 trait categories

17 trait categories



NHGRI GWA Catalog at www.genome.gov/GWAStudies
Other useful sites that catalog GWAS (interactive): https://www.ebi.ac.uk/gwas/diagram

Interactive GWAS catalog at EBI

Interactive diagram shows all SNP-trait associations with genome-wide 

significant p-value ≤ 5.0 × 10-8



TYPICAL GWAS WORKFLOW (CH. 4, P 79)

Initial GWAS – «Discovery sample»

Replication / Fine-mapping

Functional studies

Sequencing / Genotyping

Translational studies ◼ Most of the GWAS findings so far have not led to any 

major clinical applications. 

◼ HOPE -- New therapies, improved diagnostics, better 

prevention, better public health, & precision medicine.



GWAS – WHAT ARE THE CRITERIA FOR SUCCESS?

◼ Costs and availability of large samples are major limitations
 Useful to meta-analyze summary statistics from multiple cohorts (GWAMA)

◼ Strict quality control throughout the process (Marc Vaudel’s Tuesday 
lecture) + Stringent significance thresholds + Importance of replication

◼ Data sharing between several research groups is an effective way of 
increasing power to find new genes and loci.
 But control for confounders is even more important when using data 

from different cohorts participating in a large consortium

◼ Disease heterogeneity is a problem.
 The more narrowly/precisely the phenotype is defined, the better the 

odds for identifying a causal variant (but not always!)

◼ Current methods are not well developed to identify rare variants (MAF 
<1%) that are perhaps associated with higher disease penetrance.



WHAT CAN WE DO?



WHOLE GENOME/EXOME SEQUENCING

◼ Two main objectives:
 Build a comprehensive catalog of genetic variation containing both common and 

rare genetic variants
 Test these variants for association with disease.

◼ Potential applications:
 Sequence based imputations in GWAS data (Marc Vaudel’s Tuesday lecture)
 Analyze cohorts with clearly defined phenotypes and map Mendelian diseases

Disease 
related 

Intermediate 
phenotypes



META-GWAS ANALYSES – A SHORT PRIMER





STAGES IN A META-GWAS ANALYSIS

Reference: Evangelou & Ioannidis. Meta-analysis for genome-wide association studies and beyond. Nature Reviews Genetics | Vol 14 | June 2013 | 379



EXAMPLES OF CONSORTIA





STANDARD OPERATION PROTOCOL (SOP)

1) STANDARD OPERATING PROTOCOL (SOP) in «Discovery Phase»

 Background of the proposed Meta-GWAS analysis (GWAMA)

 Goals of the initiative

 Trait definition and instructions for phenotype harmonization

 A detailed definition of the trait (not all cohorts have same measures)

 Eligibility and sample inclusion/exclusion criteria

 Genotypes and imputation

 Imputation with chosen panel (HapMap Phase II CEU Panel, 1000 Genomes, HRC)

 Filters to be applied before imputation (SNP call >95%, HWE p >10e-6, MAF >5%)

 Analysis details

 Specification of models to be used in the analysis

 Linear regression/Logistic regression, Include PCA for correcting for stratification

 Results file formats

 Format to report GWAS results from individual cohorts



REPORTING OF RESULTS



PDB 289 (Study of prematurity – PI Bo Jacobsson) 



EXAMPLE OF A GWAMA

1) Trait proposed for a GWAMA: «Aggressive behavior»

 SOP describes the goal of the proposed GWAMA

 Goal: large-scale meta-GWAS on Aggressive behavior

 Merit: Findings will help identify to what extent the effect of the SNP(s) changes
with age, instrument, or the rater of the behavior. 

 Trait definition and instructions for phenotype harmonization

 Phenotype data at different ages (3 to 18 yrs) and as rated by different raters 
(parental, self and/or teacher ratings) to be included in a single analysis

 Instruments: A variety of psychometric instruments (e.g. CBCL, SDQ, ASR, YSR)

 Sample size threshold for inclusion: at least 1000 subjects.

 Limit analyses to subjects of European ancestry. 

 Genotypes and imputation

 Imputation with chosen panel (1000 Genomes) 

 Software for imputation: IMPUTE, MACH, MINIMAC or BEAGLE.

 Filters to be applied before imputation (SNP call >95%, HWE p >10e-6, MAF >5%)

 Analysis 

 For cohorts providing a single phenotype measure: Run the GWA using linear Reg.

 Covariates: sex, Z-score of age at time of assessment, Age2 (Z-transformed, then
squared), the first 5 PCs, Study-specific covariates (study site, batch effects etc.)



EXAMPLE OF A META-GWAS – CONTD…

1) Instructions for genotype handling (pre-imputation QC):

 Exclude SNPs with:

 MAF <1%

 SNP call rate <95%

 Failure of HWE exact test at p<1e-6

 Poor clustering on visual inspection of intensity plots.

 Wrong sex, aberrant genotype (XXY), known 1st or 2nd degree relatives in sample

2) Imputation:

 Use 1000 genomes Phase I release and coordinates as used in GRCh37 

 Imputation software: IMPUTE or MACH 

 Use servers for imputation: Michigan imputation server or Sanger Institute in UK

 Provide per-SNP quality indicators (proper_info in IMPUTE, r2.hat in MACH)

3) Analysis:  

 Perform association test using MACH2QTL or SNPTEST



EXAMPLE OF A META-GWAS – CONTD…

Uploading data

 To a secure server using secure transfer protocol (sftp)

 Download and Install an sftp software; e.g. Filezilla or WinScp

 Upload a «README.txt» file with a brief description of data uploaded, the date, 
the human genome reference sequence used for strand reference, and scale of
Beta estimates.

 Prepare a file named «STUDY.PHEN.DATE.txt» 
 Study=Cohort, PHEN=phenotype, Date=DDMMYYYY (date file was prepared)

Meta-analysis:

 Usually done by the lead analysts from the cohort(s) initiating this GWAMA

 Software: METAL or GWAMA



Papers on EA based including the MoBa dataset (PDB 289)

2013 (N=101,069 individuals; 3 GW sig SNPs; 2% variance)
2015 (N=293,723 individuals; 74 GW sig SNPs)

2018 (N=1.1 mill individuals;
1271 GW sig SNPs; 11-13% variance)

2015

2016

2022 (N= ~3 mill individuals;
3952 GW sig SNPs; 12-16% of variance)

A FEW EXAMPLES…



http://uis.unesco.org/en/topic/international-standard-classification-education-isced





Main findings of 2022 paper

 N=~3 mill individuals

 3952 GW significant SNPs identified

 GW polygenic predictor (PGI) explains 
12-16% of EA variance

 The PGI contributes to risk prediction for 
10 diseases
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