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LECTURE OUTLINE

General introduction to genetic epidemiology (lecture I)

o Partl

What’s a complex trait?
Genetic basis of complex traits

o Partll

Genetic approaches to studying complex traits
Candidate-gene analysis, GWAS, and GWAMA
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Genetic basis of complex traits
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WHAT IS GENETIC EPIDEMIOLOGY?

In broad terms:

«The application of genetic principles and techniques to
answering epidemiological questions»

& &

GENETICS GEPI EPIDEMIOLOGY

B W 4



LOTS OF DEFINITIONS OuUT

Table 1-1. Some definitions of genetic epidemiology

N. E. Morton and C. S. Chung (1978): **A science that deals with the etiology,
distribution, and control of disease in groups of relatives, and with inherited causes of
disease in populations.”

R. Ward (1979): “The primary objective of the genetic epidemiologist will be to identify
the genetic contribution to the etiological pathway.”

B. H. Cohen (1980): Genetic epidemiology is defined *“‘as examining the role of genetic
factors, along with the environmental contributors to disease, and at the same time,
giving equal attention to the differential impact of environmental agents, nonfamilial
as well as familial, on different genetic backgrounds.”

P. Phillippe (1982): “Genetic epidemiology studies the interaction between genetic and
environmental factors at the origin of disease.”

M.C. King et al. (1984): “Genetic epidemiology is the study of how and why diseases
cluster in families and ethnic groups.”

D.C. Rao (1984): “*Genetic epidemiology is an emerging field with diverse interests, one
that represents an important interaction between the two parent disciplines: genetics
and epidemiology. Genetic epidemiology differs from epidemiology by its explicit
consideration of genetic factors and family resemblance; it differs from population
genetics by its focus on disease; it also differs from medical genetics by its emphasis
on population aspects.”

D.F. Roberts (1985): argues the distinction of genetic epidemiology from epidemiology
in general. Genetic epidemiology *‘is not merely the application of the central concept
of epidemiology, the study of the distribution of disease in space and time, to genetic
disease. Instead, in genetic epidemiology, the concept is extended to include the
additional variables of the genetic structure of the population, with the object of
elucidating the etiology of disease in which there may be a genetic component.™

E.A. Thompson (1986a): **Genetic epidemiology is the analysis of the familial
distributions of traits, with a view to understanding any possible genetic basis.”

’

Prof of biostats @ WASH-U.

Source (book): «Fundamentals of Genetic Epidemiology», Eds. Khoury, Beaty and Cohen. Oxford Press, 1993.



GROWING CONVERGENCE OF DIFFERENT FIELDS

FAMILIALITY
[DEPENDENCE AMONG RELATIVES]

BIOLOGY RISK FACTORS

GENETICS EPIDEMIOLOGY

GENETIC EPIDEMIOLOGY

Less divergence in terminology and methodology, but an increased
conversation, collaboration and convergence across the fields.”



BUILDING A TEAM
— E.G. FOR A STUuDY OF BIRTH DEFECTS -

CLINICIANS TEAM DATA ANALYSTS
- MEDICAL GENETICIST - EPIDEMIOLOGIST
- DYSMORPHOLOGIST - STATISTICAL GENETICIST
- PLASTIC SURGEON - BIOSTATISTICIAN
- SPECIALIST NURSE - BIOINFORMATICIAN
- SPEECH PATHOLOGIST
- NUTRITIONIST
- GENETIC COUNSELOR
- PEDIATRIC DENTIST
COMPUTATIONAL SKILLS CORE BIOLOGISTS
- IT-EXPERT - HUMAN MOLECULAR GENETICIST
- DATABASE MANAGER - DEVELOPMENTAL BIOLOGIST
- DATAMINER - MOUSE GENETICIST

MANY MORE!!
- FIELD WORKERS

-VOLUNTEERS
- NGOs




Mendelian disorder vs. Complex trait

Penetrance

4
<

Mendelian ‘Highly unusual for

common diseases

disease

Most variants

identified by
GWA studies

Hard to identify
genetically

Allele
frequency

0.001

0.01 0.

Very rare Rare Uncommon Common

Reference: Mark McCarthy et al. Nat Genet Rev | 356 | May 2008 | volume 9



WHAT’S A COMPLEX TRAIT?

Different categories of disease causation
Physical, chemical, nutritional
TRAIT «Purely environmental»

Infectious agents / pathogens )
Non-genetic

Multiple genes and Multifactorial/Complex

environmental factors g
p
: : Polygeni =
Multiple genes with small olygenic 8
additive effects _ _ %
Oligogenic .
(©
A few genes with large effects o =
Digenic %0
S o
Mendelian / single-gene Monogenic i
disorders
Abnormal chromosome Chromosomal
numbers and structural causes «Purely genetic»

Source: Haines & Pericak-Vance (1998). In the book: Approaches to genetic mapping in complex human diseases. Wiley-Liss, Inc.




COMMON FEATURES OF COMPLEX TRAITS

Unlike Mendelian diseases, complex traits are relatively common

Heterogeneity at several levels:
o Genetic heterogeneity:
«locus» and «allelic» heterogeneity

Incomplete penetrance = not all individuals with the mutant genotype express the
phenotype

Effect of a gene can be masked by:
o Phenocopies = an environmentally-caused phenotype mirrors a genetically-caused trait
o Pleiotropy = the mutant genotype affects different traits or organs

Complex interactions:
o «gene-gene» and «gene-environment» interactions

Stochastic effects = random or chance events; biological processes are error-prone!



THE CONCEPT OF «LIABILITY»

Liability is an underlying continuous variable comprising both genetic and
non-genetic effects.

FIGURE: An idealized distribution of liability in individuals with various genotypes.

A AA Mean liability for
9 7 each genotype
(6]
Recessive allele g
{ ) . o it Aa
a Tses liability %
§ Threshold = value
in the liability that
Liability 4 Threshold determines whether
a disease will be
B bb expressed or not.
>
2
. S Anyone with liability
Dominant allele g greater than the
‘B’ Tses liability é threshold manifests
g the disease.
o

Liability 4 Threshold

Source: Maroni (2001). In Molecular and genetic analysis of human traits. Blackwell Science, Inc.




THE CONCEPT OF «HERITABILITY» - CH. 1

Heritability (H?) is the proportion of phenotypic variance (Vp)
attributable to genetic differences.

Broad-sense vs. narrow-sense heritability

o Broad-sense heritability is the proportion of variance in a phenotype (Vp)
attributable to the total genetic variance (Vg). H’=Vg/Vp, where Vp=Vg+Ve

o Narrow-sense heritability is the proportion of Vp attributable to additive
genetic variance (Va); i.e., H*>=Va/Vp

Additive vs. non-additive genetic effects

o Additive effects: 2 or more genes contribute to a phenotype, or when alleles in
a single gene combine so that their combined effects on the phenotype are
equal to the sum of their individual effects.

o Non-additive effects can be dominance (Vd) or epistasis (Vi)

Dominance: The effect of one allele masks the effect of a second allele at
the same locus; e.g., allele A dominates allele a.

Epistasis: An allele at one locus affects the expression of another allele at
a different locus.




IS THERE A GENETIC BASIS TO COMPLEX DISEASES?

O Study whether the disease clusters in families:

Familial aggregation studies:
o Relatives share a greater proportion of their alleles
Affected individuals will tend to cluster in families.
o Reccurence risk measured as relative risk ratio (A,)
A, = [risk to relatives of type r] + [Population risk]
o Cannot establish that the disease is hereditary
Environmental factors could also cause this clustering!

Ad O pt i O n St u d i e S : Shared Genes Shared Environment

o If a trait has a genetic influence, the risk of disease
should be higher in biological relatives than in adopted
relatives living in the same household.

Biological Adopted Adoptive
Parents Child Parents

Twin studies:

o Compare concordance i MZ vs. DZ twins

If MZ twins show close to 100% concordance but DZ twins
show significantly less: = the trait has a strong genetic
basis.

If MZ twins shows moderate concordance (40-60%) but
still significantly higher than DZ twins = both
environmental and genetic components are likely
involved in the disease.




IMPORTANCE OF SHARED ENVIRONMENT!

Shared Genes Shared Environment . ;\“‘"\\::

Sooc\ .cﬂ‘n -ﬁotn«« 04

Vi o Y
‘ IDENTICALLY
DI FFERENT | /

/
\ Why We Can Change 4
A Our Genes ‘,..':‘f

Biological Adopted Adoptive
Parents Child Parents

VI ER ENEGGEDE TVILLINGER.. MEN MOR OG FAR GUORDE
ET EKSPERIMENT MED OSS... JEG LYTTET kuN PR NRK P2, MENS




ASSESSING EVIDENCE OF FAMILIAL AGGREGATION

Usual to look at two types of correlations between
relative pairs:

O «INTER»class correlation
Involves two different classes of relatives:

o E.g. husband-wife, parent-offspring, brother-
sister, grandparent-grandchild, etc.

O «INTRAx»class correlation

Involves only a single class of relatives:

o E.g. brother-brother, sister-sister, etc.




AN EXAMPLE

Fingerprint data: count the number of
ridges to explore degree of familiality.

crossover

core

2 scenarios:

bifurcation

O Dataset I:
Parent-offspring correlation: 0.48 £ 0.04
Sibling correlation: 0.50 £ 0.04
Spouse correlation: 0.05 + 0.07
O Dataset Il:
Parent-offspring correlation 0.22 + 0.01
Sibling correlation: 0.39+0.01

Spouse correlation: 0.15 + 0.02



AN EXAMPLE — CONTD...

O Dataset I:
Parent-offspring correlation: 0.48 £ 0.04
Sibling correlation: 0.50 £ 0.04
Spouse correlation: 0.05 £ 0.07
O Dataset Il:
Parent-offspring correlation 0.22 £ 0.01
Sibling correlation: 0.39+£0.01
Spouse correlation: 0.15 £ 0.02

Positive correlation coefficients suggest familial aggregation for this trait

Strong degree of familiality in Dataset I.
Sibling correlation is slightly higher than parent-offspring correlation
o Consistent with siblings sharing more of their environment than parents & offspring

Don’t see same degree of correlation in the spouse group
o Consistent with a less genetic sharing between spouses.

In Dataset Il, higher spouse correlation may be due to shared spousal
environment (perhaps some assortative mating..?)

Overall, there seems to be stronger environmental influences in Dataset Il.



LECTURE OUTLINE

General introduction to genetic epidemiology (lecture I)

o Partll

Genetic approaches to studying complex traits
Candidate-gene analysis, GWAS, and GWAMA




GENETIC APPROACHES TO INVESTIGATING A COMPLEX TRAIT

Once we have found evidence for a genetic component:

O Linkage studies in families with multiple affected members (‘multiplex’)

Test for cosegregation of a marker with the disease to see if the genetic marker and
disease gene are physically linked

Problematic for complex diseases because of a lack of multiplex families

O Allele-sharing studies in affected relative pairs
Apply model-free methods on smaller subunits within multiplex families
«ldentity by descent» (IBD) methods
o Knowledge of transmission not required (non-parametric, or model-free)

o Reasonable power to detect genes of fairly modest effects

O Linkage disequilibrium approaches
Exploit how genetic markers are correlated on chromosomes.



LINKAGE STUDIES IN MULTIPLEX FAMILIES

Genomewide linkage analyses can be performed using around 400 microsatellite
markers distributed with an average spacing of 10 cM for genomewide coverage.
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ALLELE-SHARING STUDIES

Main idea: If affected pairs inherit a particular chromosomal fragment more
often than would be expected by chance alone — this shows linkage!

AB cD AB

BLC AC =
25% 25% 25% 25%
w J — V2R J
Y Y Y
2 (25 %) 1 (50 %) 0 (25 %)

No. of parental alleles shared (% of Mendelian proportion)

Deviations from these expected proportions = evidence of linkage

Source: Thomson and Esposito (1999). Trends Cell Biol. 9(12):M17-20.



LINKAGE DISEQUILIBRIUM (LD) APPROACHES

o Either case-control or family-based
Compare marker allele frequencies between a case and a control population

With family data, non-transmitted parental alleles are used as control alleles.

o Test for deviations from the expected 50% transmission of an allele from parents to
offspring.

OO0
OO0
OO0

VS.

Case (desease) Control (healthy)



THE CANDIDATE-GENE APPROACH

BIOLOGICAL
PLAUSIBILITY

POSITIONAL ANIMAL
PLAUSIBILITY MODEL

CANDIDATE
GENE

IDENTIFY GENETIC VARIATION

4

DETERMINE GENOTYPE-PHENOTYPE CORRELATION

4

FUN

CTIONAL STUDIES

4

4

GENE-GENE (GxG) INTERACTIONS

GENE-ENVIRONMENT (GxE) INTERACTIONS




" J
Selecting SNPs for candidate-gene analysis

m Databases for selection/evaluation of SNPs:
1000 Genomes, e!/Ensembl, UCSC’s genome browser, and dbSNP, etc..

|Search by IDs on All Assemblies
Note: 5= and ss= must be prefixed with 'rs” or ss", respectively (i.e

|Submission Information

By Submutter

H
mmmmm

seavasy

m Criteria for prioritizing SNP selection:
Prior association with the trait being studied
Minor allele frequency (MAF) of at least 5% to capture common variants
Preference for coding SNPs and SNPs in regulatory regions — functional!
SNPS with «haplotype-tagging» properties




SNP custom-assay and genotyping

m SNP assays can be designed by ILLUMINA™

A customized full panel of X number of SNPs in Y number of candidate genes.

m Outsource the genotyping (and QC) to a core facility: e.g Microarray
facility (Oslo), Sanger Institute (UK), DeCode genetics (Iceland), etc..

lllumina iScan system E.g. of genotype calling

Genomics Core facility Oslo
Genomics.Core Facility
Oslo Univérsity Hospital and Helse Sor-@st
2
——— —— | 1
2 Sequencing
1 : "
‘I - 2
Sample Requirements >
Proven Solutions. Quality Provider.
0 e
68 12 16
0 020 040 060 0.80 1
Norm Theta TaceeIved:poid genomics.cf.oslo@gmail.com

26



Data Quality Control (Prelude to Marc’s lecture on Tuesday)

m Assess within/between plate genotype reproducibility ﬂ
=> SNP is deemed to have failed if <95% of samples generatea ~_,..=="" "
genotype at the locus 'k)
m  Exclude all SNPs with MAF <1%. » ‘i'

—> Low statistical power in association analysis

m Remove all SNPs that show deviation from HWE. \:
—> Systematic genotyping errors, sample mix-ups, latent
population substructure, or a biological effect (e.g., natural
selection).

m Screen for Mendelian inconsistencies within families.
—> Sample switches or misidentified paternity/maternity

” Ok! ??

AB AA AB AA AA AA




GENOME-WIDE ASSSOCIATION STUDIES — CH.4

m Hypothesis-free (agnostic) compared to candidate-gene approach
Looks for association across the entire genome using high-resolution
SNP arrays (0.5-2.5 mill).

m What have we learnt?
m Many association signals are not in genes previously thought to be
associated with the disease.
m Some associations are in areas that weren’t even known before.

— Provide new insights into biology and disease mechanism ©

Signals in «gene deserts»:

Prostate cancer; CL/P 8024

Crohn’s disease 5p13.1; 1g31.2; 10p21
Signals in common (pleiotropy):

Diabetes/CHD/Melanoma CDKN2A/2B

Prostate/breast/colon cancers; CL/P 8024

Crohn’s disease/Psoriasis IL23R

Crohn’s disease/T1DM PTPN2




Published GWAS through Dec 2012 at p<5X10-2 for 17 trait categories

17 trait categories

Digestive system disease
Cardiovascular disease

Metabolic disease

Immune system disease

MNervous system disease

Liver enzyme measurement

Lipid or lipoprotein measurement
Inflammatory marker measurement
Hematological measurement
Body measurement
Cardiovascular measurement
Other measurement

Response to drug

Biological process

Cancer

Other disease

Other trait

o) Joyolel Jololerele) JeoreJoy ¥

il Il National Human
HII Genome Research
Institute

EMBL-EBI

NHGRI GWA Catalog at www.genome.gov/GWAStudies
Other useful sites that catalog GWAS (interactive): https://www.ebi.ac.uk/gwas/



Interactive GWAS catalog at EBI
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TYPICAL GWAS WORKFLOW (CH. 4, P 79)

Initial GWAS — «Discovery sample» I

|

Replication / Fine-mapping I

|

Sequencing / Genotyping I

.JMIDIC . FAM9B
1]

. . '
R ;
. St g g ¥ A s 8 TR
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19202122 X

Chromosome
| q
S i
P P

Functional studies I

|

Translational studies I B Most of the GWAS findings so far have not led to any
major clinical applications.

B HOPE -- New therapies, improved diagnostics, better

prevention, better public health, & precision medicine.

-log,0(P)
0 2 4 6 8 10 12




" A
GWAS - WHAT ARE THE CRITERIA FOR SUCCESS?

m Costs and availability of large samples are major limitations
O Useful to meta-analyze summary statistics from multiple cohorts (GWAMA)

m Strict quality control throughout the process (Marc Vaudel’s Tuesday
lecture) + Stringent significance thresholds + Importance of replication

m Data sharing between several research groups is an effective way of
increasing power to find new genes and loci.
But control for confounders is even more important when using data
from different cohorts participating in a large consortium

m Disease heterogeneity is a problem.
The more narrowly/precisely the phenotype is defined, the better the
odds for identifying a causal variant (but not always!)

m Current methods are not well developed to identify rare variants (MAF
<1%) that are perhaps associated with higher disease penetrance.




"

WHAT CAN WE DO?

4 R

Improving the resolution
of current GWAS studies

Larger sample sizes
Endo- and sub-phenotypes
Non-European
K Disease pleiotropy
/ Exploring the full
spectrum of genetic
variation
Rare variants (HapMap3, 1000G and direct
sequencing)

4 N

Clinical translation

Prospective studies
Aggregate risk scores

Structural variants (CNVs & indels)

Epigenetic variation
Parent-of-origin effects etc

b/
N

Understanding function
Functional genome annotation
eQTLs
Model organisms

v /




" A
WHOLE GENOME/EXOME SEQUENCING

m Two main objectives:
Build a comprehensive catalog of genetic variation containing both common and
rare genetic variants
Test these variants for association with disease.

m Potential applications:
Sequence based imputations in GWAS data (Marc Vaudel’s Tuesday lecture)
Analyze cohorts with clearly defined phenotypes and map Mendelian diseases

Phenotypes
DNA sequence
= Metabolomics : :
VD
Disease
related
Gene expression .
Y Intermediate
phenotypes

DNA Methylation
y <




META-GWAS ANALYSES — A SHORT PRIMER

O 1) DISCOVERY PHASE
Analyze GWAS results from different cohorts (Consortia)

& Increase statistical power through increasing sample size
& Beware of heterogeneity (PCA, stratified analyses, inflation, QQ plot)

Analysis of data at an aggregated level, i.e. not individual-level data.
& Many Ethic Committees have an issue with sharing individual-level data.
& Meta-GWAS analysis offers a good compromise

Different cohorts perform genome-wide imputation using the same
imputation panel to harmonize genotype data across cohorts

& Harmonizes genotyping platforms (standardization)
& Lots more SNPs to analyze = More statistical power

2) REPLICATION PHASE
Invite more cohorts for replication

& Confirmation of original findings in discovery phase



STAGES IN A META-GWAS ANALYSIS

[Set up consortium]

l [ Set up collaboration rules upfront j
[ e Formulate analysis team} e ~
* Write analysis plan * Goal is to avoid introducing
heterogeneity
l e Standardized definition
of phenotype
® Inclusion and exclusion criteria
* Harmonize data sets based on analysis plan clearly described
{0 Carry out analysis in each group } L * Quality-control rules apply

}

{0 Set up storage options }

® Collect summary statistics

results and controlling

l Novel methods for synthesizing
heterogeneity may apply

e Synthesize results

}

[0 Prioritize signals based on pre-specified threshold}

{' Investigate sources of heterogeneity}

* Replicate selected findings

}

[Carry out meta-analysis including all available data}

Reference: Evangelou & loannidis. Meta-analysis for genome-wide association studies and beyond. Nature Reviews Genetics | Vol 14 | June 2013 | 379



EXAMPLES OF CONSORTIA
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GWAS of 126,55

COHORTS FOR HEART AND AGING RESEARCH
IN GENOMIC EPIDEMIOLOGY

CHARGE Consortium

The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium was form
phenotyped longitudinal cohort studies.

Its founding member cohorts include:

« Age, Gene, Environment, Susceptibility Study -- Revigavik
« Atherosclerosis Risk in Communities Study

« Cardiovascular Health Study

« Framingham Heart Study
« Rotterdam Study

Additional core cohorts include:

« Coronary Artery Risk Development in Young Adulis
« Family Heart Study

« Health, Aging, and Body Composition Study

« Jackson Heart Study

« Multi-Fthnie Study of Atherosclerosis

EAGLE Consortium

The EArly Genetics and Lifecourse Epidemiology
(EAGLE) Consortium is a consortium of pregnancy
and birth cohorts that aims to collaborate to
investigate the genetic basis of phenotypes in
antenatal and early life and childhood.

EAGLE covers a broad range of pathways and
phenotypes, and will integrate closely with the
DOHaD (developmental origins of health and
disease) community.

All participating cohorts (1958 British Birth
Cohort; ALSPAC; CHOP; COPSAC; DBC; Exeter
Family Study; Generation R; HBCS; LISA+; MoBa;
NTR; NFBC 66; Project Viva; Raine) have GWAS
data available by July 1st 2009.

EAGLE working groups and leaders are listed

below:

» Antenatal Growth (Vincent Jaddoe and
Craig Pennell)

EAGLE

EArly Genetics & Lifecourse
Epidemiology Consortium




m About Us Research PGI Repository News Events Contact

Welcome to the Social ocial
Science Genetic Association cience
Consortium (SSGACQC). o enetic

ssociation
onsortium

The SSGAC is a cooperative enterprise among medical researchers and
social scientists that coordinates genetic association studies for social
science outcomes and provides a platform for interdisciplinary
collaboration and cross-fertilization of ideas. The SSGAC also tries to
promote the collection of harmonized and well-measured phenotypes.

Recent Events: Russell Sage Foundation Summer Institute in Socia ce Genomics, 2021

Current Initiatives Data

g

To locate and download summar;

studies of the SSGAC, clic
of multiple phenotypes

e Polygenic Index

hods for multi-ancestry

ontact us if you are interested in joining
tiatives

Check us out on Twitter: @thessgac
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News
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STANDARD OPERATION PROTOCOL (SOP)

1) STANDARD OPERATING PROTOCOL (SOP) in «Discovery Phase»
Background of the proposed Meta-GWAS analysis (GWAMA)

@ Goals of the initiative

Trait definition and instructions for phenotype harmonization
& A detailed definition of the trait (not all cohorts have same measures)
# Eligibility and sample inclusion/exclusion criteria

Genotypes and imputation

B Imputation with chosen panel (HapMap Phase || CEU Panel, 1000 Genomes, HRC)
B Filters to be applied before imputation (SNP call >95%, HWE p >10e-6, MAF >5%)

Analysis details
&  Specification of models to be used in the analysis
B Linear regression/Logistic regression, Include PCA for correcting for stratification

Results file formats

B Format to report GWAS results from individual cohorts



REPORTING OF RESULTS

Variable name Description

(case sensitive!!)

SNPID SNP ID as rs number

Chr Chromosome number (1-22).

position physical position for the reference sequence (indicate build 35/36
in readme file)

coded all Coded allele, also called modelled allele (in example of A/G

noncoded all

strand genome

SNP in which AA=0, AG=1 and GG=2, the coded allele 1s G)
The other allele

+ or -, representing either the positive/forward strand or the
negative/reverse strand of the human genome reference
sequence; to clarify which strand the coded all and noncoded all

are_Qn

Beta

SE

Pval

Beta estimate from genotype-phenotype association, at least 5
decimal places — ‘NA’ 1f not available

Standard error of beta estimate, to at least 5 decimal places —
‘NA’ if not available

p-value of test statistic, here just as a double check — “NA”’ 1f not
available

AF coded all
HWE pval

callrate

n total
imputed

used for imp
oevar imp*

avpostprob™®*

Allele frequency for the coded allele — “NA” 1f not available
Exact test Hardy-Weinberg equilibrium p-value -- only directly
typed SNPs, NA for imputed

Genotyping call rate after exclusions

Total sample with phenotype and genotype for SNP

1/0 coding; I=imputed SNP, 0=if directly typed

1/0 coding; 1=used for imputation, O=not used for imputation
Observed divided by expected variance for imputed allele dosage
-- NA otherwise

Average posterior probability for imputed SNP allele dosage
(applies to best-guess genotype imputation)

* oevar_imp is called 12 in Mach, proper_info in Impute and R"2 in Beagle.
** avpostprob is called Quality in Mach, certainty in Impute and Beagle does not give this statistic.




A
SAMPLE INFORMATION

PDB 289 (Study of prematurity — Pl Bo Jacobsson)

Country

Sampling scheme
SNP chip
Pre-imputation QC

Marker filters:

MAF >

Call rate >

HWE exact test at p >
Removed subjects with:

Qverall call rates <

Imputation & association procedure

Study contacts (name, email):

Imputation software
Reference sample
NCBI build
Association software

Data analyst:
Primary contact:
Other contact(s):

Norway
Population-based, nested case-control e.g., family-based, clinically-selected (please specify selected phenotype), etc.
lllumina 660W quad

0.5 5% recommended

95% 95% recommended

'0.001 10E-06 recommended

98%

PLINK 1.07 please specify version number

HAPMAP || CEU HapMap phase Il CEU recommended
NCBI 36.2 e.g. NCBI 36.2
PLINK 1.07 please specify version number

Ronny Myhre, Astanand Jugessur and Hakon Gjessing
Bo Jacobsson (PI; bo.jacobsson@obgyn.gu.se) and Astanand Jugessur (astanand.jugessur@fhi.no)
Per Magnus

Additional notes X e.g., non-standard covariates included in analyses (please specify)
SAMPLE DEMOGRAPHICS
Females Controls sPTD cases
N 1338 678 660
Age at reporting
Mean 28.7 28.9 28.4
St. Dev. 2L 3.6 3.6
Range 14 (20-34) 14 (20-34) 14 (20-34)
Birth Year
Mean 1974.7 1974.4 1975
St. Dev. 3.8 b 3.4 4.0
Range 20 (1966-1986) 19 (1966-1985) 20 (1966-1986)
Race (N per category) Note that only individuals of European heritage should be included in the analysis
American Indian or Alaska Native na
Asian na
Native Hawaiian or Other Pacific Islander na
Black na
White na
Ethnicity (N per category)
Hispanic or Latino na
Not Hispanic or Latino na




EXAMPLE OF A GWAMA

1) Trait proposed for a GWAMA: «Aggressive behavior»

SOP describes the goal of the proposed GWAMA
Goal: large-scale meta-GWAS on Aggressive behavior
Merit: Findings will help identify to what extent the effect of the SNP(s) changes
with age, instrument, or the rater of the behavior.

Trait definition and instructions for phenotype harmonization

# Phenotype data at different ages (3 to 18 yrs) and as rated by different raters
(parental, self and/or teacher ratings) to be included in a single analysis

Instruments: A variety of psychometric instruments (e.g. CBCL, SDQ, ASR, YSR)
Sample size threshold for inclusion: at least 1000 subjects.

Limit analyses to subjects of European ancestry.

Genotypes and imputation

& Imputation with chosen panel (1000 Genomes)

& Software for imputation: IMPUTE, MACH, MINIMAC or BEAGLE.

@ Filters to be applied before imputation (SNP call >95%, HWE p >10e-6, MAF >5%)

Analysis
& For cohorts providing a single phenotype measure: Run the GWA using linear Reg.

#  Covariates: sex, Z-score of age at time of assessment, Age? (Z-transformed, then
squared), the first 5 PCs, Study-specific covariates (study site, batch effects etc.)




EXAMPLE OF A META-GWAS - CONTD...

1) Instructions for genotype handling (pre-imputation QC):

Exclude SNPs with:

MAF <1%

SNP call rate <95%

Failure of HWE exact test at p<le-6

Poor clustering on visual inspection of intensity plots.

Wrong sex, aberrant genotype (XXY), known 1st or 2nd degree relatives in sample

2 & & 2 2

2) Imputation:
@ Use 1000 genomes Phase | release and coordinates as used in GRCh37
& Imputation software: IMPUTE or MACH
& Use servers for imputation: Michigan imputation server or Sanger Institute in UK
@ Provide per-SNP quality indicators (proper_info in IMPUTE, r2.hat in MACH)

3) Analysis:
& Perform association test using MACH2QTL or SNPTEST



EXAMPLE OF A META-GWAS - CONTD...

Uploading data
To a secure server using secure transfer protocol (sftp)

# Download and Install an sftp software; e.g. Filezilla or WinScp

# Upload a «<README.txt» file with a brief description of data uploaded, the date,
the human genome reference sequence used for strand reference, and scale of
Beta estimates.

@ Prepare a file named «STUDY.PHEN.DATE.txt»
Study=Cohort, PHEN=phenotype, Date=DDMMYYYY (date file was prepared)

Meta-analysis:

@ Usually done by the lead analysts from the cohort(s) initiating this GWAMA
&  Software: METAL or GWAMA



A FEW EXAMPLES...

Papers on EA based including the MoBa dataset (PDB 289)

2013 (N=101,069 individuals; 3 GW sig SNPs; 2% variance)
XPpress

GWAS of 126,559 Individuals
Identifies Genetic Variants Associated
with Educational Attainment

All authors with their affiliations appear at the end of this paper

2015 (N=293,723 individuals; 74 GW sig SNPs)
LEITER

Reports

04:10.1038/ nature17671

ured at an age at whid
very likely to have

edvcation [over 95% of
at least 30: (5)]. On a

Genome-wide association study identifies 74 loci
bave 133 yous of | associated with educational attainment

pooling of GWAS req Alistc

conducted analyses wi

10 the HapMap 2 CEU|

cnce set. To guard ag Educational attainment is strongly influenced by social and

" stratification, the first other environmental factors, but genetic factors are estimated to

Ag - of the gen account for at least 20% of the variation across individuals'. Here mic region that has the e (Supplementary

dlscovery sample of 101, 069 mdlvnduals anda roplu:auon sampla of 25,490. Thue ““MM a8 coukrols i we report the results of a genome-wide association study (GWAS) ion s 1), g a plot with
SNPs are g 511584700, rsd4851266), vl gmalvees Al ent that extends our earlier discovery  the lead SNPs

and all three replicate. Estimated H cts sizes are small (R? = 0.02%), approximately 3 t0 293,723 individuals, and a g i

thors and their affiliations appears in the online version of the paper

ficant loci. For cach locus, we define the lead SNP'as the

GWAS results were qu

1 month of schooling per allele. A linear polygenic score from all measured SNPs iy ) na cla-anal; ', The quantile-quantile (Q-Q
accounts for = 2% of the variance in both educational attainment and cognitive g single genoiic. ol l-...L Weidentify 74 genome-wide significantloci  plot of the meta-analysis (Extended Data Fig. 1) exhibits inflation
function. Genes in the region of the loci have previously been associated with ple sl it o] associated with the number of years of schooling completed. Single- (A = 1.28),as expected under polygeniciry

health, cognitive, and central nervous system and 1 leotid, ducati i Extended Data Fig. 2 shows the estimated effect sizes of the lead

analysis ce .

found in genomic regi

analyses suggest the involvement of the anterior caudate nucleus. These findings A o v oaately e L geaem atlngpone
expression in the fetal brain. Candidate genes are preferential

provide promising candidate SNPs for follow-up work, and our effect size estimates i 't scners!
can anchor power analyses in social-science genetics. loss, Av i peevions

2015

Molecular Psychiatry (2015) 20, 735-743 o
© 2015 Macmillan Publishers Limited Al rights reserved 1359-4184/15

2018 (N=1.1 mill individuals;
1271 GW sig SNPs; 11-13% variance)

nature genetics

2022 (N=~3 mill individuals;

‘wwrw.natura.com/mp

3952 GW sig SNPs; 12-16% of variance)
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The association between lower educational attainment and
depression owing to shared genetic effects? Results in ~25 000
subjects
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DF Levinson®, S Lucae’, Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium (Corporate Collaborator),
NG Martin®, SE Medland®, A Metspalu®®, L Milani**, MM Noethen'®, JB Potash'", M Rietschel”, CA Rietveld™'%, 5 Ripke'®, J Shi'®,

Social Science Genetic Association Consartium (Carporate Collaborator), G Willemsen®, Z Zhu?, DI Boomsma®, NR Wray® and
BWJH Penninx
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Polygenic prediction of educational attainment
within and between families from genome-wide
association analyses in 3 million individuals

Aysu Okbay'?1?8%2 Yeda Wu?, Nancy Wang?, Hariharan Jayashankar?, Michael Bennett®3,

Seyed Moeen Nehzati?, Julia Sidorenko ©?2, Hyeokmoon Kweon', Grant Goldman?,

Tamara Gjorgjieva®3, Yunxuan Jiang®, Barry Hicks®, Chao Tian5, David A. Hinds®5, Rafael Ahlskogs,
Patrik K. E. Magnusson®7, Sven Oskarsson©@¢, Caroline Hayward©2, Archie Campbell©®°°,

David J. Porteous©°9" Jeremy Freese', Pamela Herd™, 23andMe Research Team*, Social

Science Genetic Association Consortium*, Chelsea Watson?, Jonathan Jala?, Dalton Conley™,
Philipp D. Koellinger'®, Magnus Johannesson'®, David Laibson"”, Michelle N. Meyer'8, James J. Lee®,
Augustine Kong??, Loic Yengo?'®8, David Cesarini®?"?2'°¢, Patrick Turley®2*'°8 Peter M. Visscher?'98&,
Jonathan P. Beauchamp?5'°8, Daniel J. Benjamin®34261%85< apnd Alexander |. Young*26197198 4

We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of -3 million individuals and
identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide
polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten dis-
eases. Direct effects (i.e., controlling for parental PGls) explain roughly half the PGI's magnitude of association with EA and
other phenotypes. The correlation between mate-pair PGls is far too large to be consistent with phenotypic assortment alone,
implying additional assortment on PGl-associated factors. In an additional GWAS of dominance deviations from the additive
model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57.



o N=~3 mill individuals
o 3952 GW significant SNPs identified

o GW polygenic predictor (PGI) explains
12-16% of EA variance

o The PGI contributes to risk prediction for
10 diseases



LECTURE OUTLINE

General introduction to genetic epidemiology (lecture I)

o Partl

What’s a complex trait?
Genetic basis of complex traits

o Partll

Genetic approaches to studying complex traits
Candidate-gene analysis, GWAS, and GWAMA
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