
Interactions!
GxG, GxE, MxE, PoOxE, GxMe, PoOxMe

GxG = Gene x Gene interaction

GxE = Gene x Environment interaction

MxE = Maternal genes x Environment interaction

PoOxE = Parent-of-origin x Environment interaction

GxMe = Gene x Methylation interaction

PoOxMe = Parent-of-origin x Methylation interaction
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INTERACTIONS

Also known as “Effect modifications”... but is that the same?

In genetics, often referred to as epistasis

Consider the effect of X1 on Y

Does the effect change over levels of another variable X2?

NOTE: X1 and X2 can be, for instance:

X1: SNP and X2: SNP

X1: SNP and X2: environmental exposure

X1: environmental exposure and X2: environmental exposure
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INTERACTIONS, RISK DIFFERENCE (RD)
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INTERACTIONS, RELATIVE RISK (RR), SCALE DEPENDENCE
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INTERACTIONS, QUALITATIVE
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INTERACTIONS VERSUS CONFOUNDING
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INTERACTIONS VERSUS CONFOUNDING
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INTERACTIONS, BINOMIAL REGRESSION

Logistic model (logit link):

logit(p) = β0 + β1x1 + β2x2 + β3 x1 · x2︸ ︷︷ ︸
interaction

Relative risk model (log link):

log(p) = β0 + β1x1 + β2x2 + β3 x1 · x2︸ ︷︷ ︸
interaction

Additive model (identity link):

p = β0 + β1x1 + β2x2 + β3 x1 · x2︸ ︷︷ ︸
interaction
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INTERACTION: HETEROGENEITY MODEL (INDEPENDENT ACTION)

D2

D1

D

X2

X1

0/1

0/1

β2

β1

P(D) = P(D1 ∪D2) = P(D1) + P(D2) − P(D1 ∩D2)

P(D1) = β1X1 P(D2) = β2X2

P(D) = β1X1 + β2X2 − β1β2 X1 · X2︸ ︷︷ ︸
β3=−β1β2

Interaction on an additive scale but components act independently!
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INTERACTION: HETEROGENEITY MODEL (INDEPENDENT ACTION)

D2

D1

D

X2

X1

0/1

0/1

β2

β1

P(D) = P(D1 ∪D2) = P(D1) + P(D2) − P(D1 ∩D2)

Additiv for log(1 − p)

1 − P(D) = (1 − β1X1)(1 − β2X2)

Håkon K. Gjessing (NIPH) Gene-environment interactions Norbis course, 4 Dec, 2020 5 / 34



INTERACTION: HETEROGENEITY MODEL (INDEPENDENT ACTION)

D2

D1

D

X2

X1

0/1

0/1

β2

β1

P(D) = P(D1 ∪D2) = P(D1) + P(D2) − P(D1 ∩D2)

Multiple loci:

P(D) = P(D1 ∪ · · · ∪DK) = 1 −
∏
i

(1 − P(Di)) = 1 −
∏
i

(1 − βiXi)
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GENETIC INTERACTION MODELS: ALLELE INTERACTIONS
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GENETIC INTERACTION MODELS: ONE NECESSARY LOCUS
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GENETIC INTERACTION MODELS: X-INACTIVATION
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MULTIPLICATIVE VERSUS ADDITIVE

Assume:

Baseline risk 4%

RD = 1% risk difference for both X1 and X2

RR = 1.25 relative risk for both X1 and X2

Additive risk
X2

0 1

X1
0 4% 4% + 1% = 5%

1 4% + 1% = 5% 4% + 1% + 1% = 6%

Multiplicative risk

X2

0 1

X1
0 4% 4% · 1.25 = 5%

1 4% · 1.25 = 5% 4% · 1.25 · 1.25 = 6.25%
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MULTIPLICATIVE VERSUS ADDITIVE

Assume:

Baseline risk 4%

RR = 1.25 relative risk for both X1 and X2

RD = 1% risk difference for both X1 and X2

When X1 = 1 and X2 = 1:

ADDITIVE RISK

4% + 1% + 1% = 4% · (1 + 0.25 + 0.25) = 6%

MULTIPLICATIVE RISK

4% · (1 + 0.25) · (1 + 0.25) = 4% · (1 + 0.25 + 0.25 + 0.0625) = 6.25%

Difference is small when effect is “small” compared to baseline risk
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Abstract
There are 512 two-locus, two-allele, two-phenotype, fully

penetrant disease models. Using the permutation be-

tween two alleles, between two loci, and between being

affected and unaffected, one model can be considered to

be equivalent to another model under the corresponding

permutation. These permutations greatly reduce the

number of two-locus models in the analysis of complex

diseases. This paper determines the number of nonre-

dundant two-locus models (which can be 102, 100, 96,

51, 50, or 58, depending on which permutations are

used, and depending on whether zero-locus and single-

locus models are excluded). Whenever possible, these

nonredundant two-locus models are classified by their

property. Besides the familiar features of multiplicative

models (logical AND), heterogeneity models (logical

OR), and threshold models, new classifications are add-

ed or expanded: modifying-effect models, logical XOR

models, interference and negative interference models

(neither dominant nor recessive), conditionally domi-

nant/recessive models, missing lethal genotype models,

and highly symmetric models. The following aspects of

two-locus models are studied: the marginal penetrance

tables at both loci, the expected joint identity-by-descent

(IBD) probabilities, and the correlation between marginal

IBD probabilities at the two loci. These studies are useful

for linkage analyses using single-locus models while the

underlying disease model is two-locus, and for correla-

tion analyses using the linkage signals at different loca-

tions obtained by a single-locus model.
Copyright © 2000 S. Karger AG, Basel

Introduction

Disease models involving two genes, usually called
‘two-locus models’ [e.g. ref. 41, 64], have been widely used
in the study of complex diseases, including likelihood-
based linkage analysis [34, 48, 61, 77], allele-sharing-
based linkage analysis [9, 17, 24, 39, 46, 75], marker-asso-
ciation-segregation method [4, 14], weighted-pairwise
correlation method [94], variance component analysis
[84–86], recurrence risk of relatives [67, 74, 88], and
segregation analysis [16, 18, 19, 31, 32, 35]. Besides
human genetics, two-locus models have also been used in
the study of evolution, as well as in genetic studies of
inbreeding animals and plants.

Using two-locus models is a natural choice if the un-
derlying disease mechanism indeed involves two or more
genes, though there have been extensive discussions on
the power of using single-locus models for linkage analysis
in that situation [15, 29, 30, 33, 36, 40, 69, 78, 79, 87, 89,
90]. Also, two-locus models have frequently been used in
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based linkage analysis [34, 48, 61, 77], allele-sharing-
based linkage analysis [9, 17, 24, 39, 46, 75], marker-asso-
ciation-segregation method [4, 14], weighted-pairwise
correlation method [94], variance component analysis
[84–86], recurrence risk of relatives [67, 74, 88], and
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human genetics, two-locus models have also been used in
the study of evolution, as well as in genetic studies of
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Using two-locus models is a natural choice if the un-
derlying disease mechanism indeed involves two or more
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based linkage analysis [34, 48, 61, 77], allele-sharing-
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ciation-segregation method [4, 14], weighted-pairwise
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[84–86], recurrence risk of relatives [67, 74, 88], and
segregation analysis [16, 18, 19, 31, 32, 35]. Besides
human genetics, two-locus models have also been used in
the study of evolution, as well as in genetic studies of
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Using two-locus models is a natural choice if the un-
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INTERACTIONS: WHO SAID IT WAS EASY?

Example 1:

Locus 2

bb bB BB

aa 0 0 0

Locus 1 aA 0 0 0

AA 0 0 1

0 = no disease

1 = disease

Example 2:

Locus 2

bb bB BB

aa 0 1 1

Locus 1 aA 1 1 1

AA 1 1 1

0 = no disease

1 = disease
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PARENT-OF-ORIGIN EFFECTS
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PARENT-OF-ORIGIN EFFECTS

Parent-of-origin effect:
Interaction between allele effect and parent-of-origin

GxE:
Further interaction with environment

Non-smokers Smokers
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PARENT-OF-ORIGIN EFFECTS, CLEFT LIP/PALATE

Table 1: Examples

RS470563, ZNF236

Test effect Stratum RRcm RRcf RRcm/RRcf

POO effects
S1 0.952 1.073 0.888 (0.862, 1.339)
S2 0.952 1.073 0.888 (0.862, 1.339)

S1/S2 1 (-) 1 (-) 1 (-)

GxE effects
S1 1.155 1.155 1 (-)
S2 0.482 0.482 1 (-)

S1/S2 2.401 (1.472, 3.911) 2.401 (1.472, 3.911) 1 (-)

POOxE effects
S1 1.087 1.221 0.890 (0.655, 1.196)
S2 0.445 0.517 0.861 (0.387, 1.873)

S1/S2 2.444 (1.266, 4.749) 2.363 (1.253, 4.434) 1.034 (0.447, 2.424)

RS2964137, KIAA0947

Test effect Stratum RRcm RRcf RRcm/RRcf

POO effects
S1 0.707 0.936 0.755 (0.505, 1.111)
S2 0.707 0.936 0.755 (0.505, 1.111)

S1/S2 1 (-) 1 (-) 1 (-)

GxE effects
S1 0.802 0.802 1 (-)
S2 0.865 0.865 1 (-)

S1/S2 0.928 (0.538, 1.603) 0.928 (0.538, 1.603) 1 (-)

POOxE effects
S1 0.533 1.170 0.456 (0.290, 0.705)
S2 1.915 0.385 4.979 (2.137, 11.253)

S1/S2 0.278 (0.135, 0.576) 3.038 (1.446, 6.345) 0.092 (0.036, 0.236)

1
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GENE-ENVIRONMENT INTERACTIONS

Exposure variable:

Environmental exposure variable

For instance, maternal smoking during pregnancy

A moderate number of levels, for instance:

1 = non smokers, 2 = light smokers, 3 = heavy smokers

Objective:

Will the effect of fetal genes change depending on exposure?

For instance, genes that modify alcohol metabolism may influence the

harmful effect of alcohol consumption

Data:

We need to include environment/exposure variable in the dataset
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ENVIRONMENT (EXPOSURE) VARIABLE

Generate a random environment variable with three levels!

(Only as an illustration)

Make sure everybody gets the same:

set.seed(24)

Draw at random from levels 1, 2, 3:

env <- sample(1:3, size = 1659, replace = T)
head(env)

[1] 1 1 3 2 2 3
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ENVIRONMENT (EXPOSURE) VARIABLE

Create and dump data frame with variable

env <- data.frame(env = env)
write.table(env, "data/env.dat", row.names = F)

NOTE: This if of course ad-hoc, for the illustration. The variable should

come from original data and be matched to individual id’s

Typically, the environment variable could be the same for all mother,

father, and child. Or it could be NA for child and father, etc.
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ENVIRONMENT (EXPOSURE) VARIABLE

Read data, including environment variable

tmp <- genDataRead(file.in = "data/pres.ped",
file.out = "pres", dir.out = "data",
format = "ped", cov.file.in = "data/env.dat")
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QUICK PEEK AT THE INTERNAL DATA STRUCTURE

Before pre-processing

head(tmp$cov.data)

id.fam id.c id.f id.m sex cc env
1 1 1 3 2 2 1 1
2 1 2 0 0 2 0 1
3 1 3 0 0 1 1 3
4 2 1 3 2 1 0 2
5 2 2 0 0 2 0 2
6 2 3 0 0 1 1 3

Data frame with character vectors

Everything read “as is”
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PRE-PROCESS DATA

Pre-process data, using 3 cores

pres.data <- genDataPreprocess(tmp, map.file = "data/pres.map",
dir.out = "data", ncpu = 3)
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QUICK PEEK AT THE INTERNAL DATA STRUCTURE

head(pres.data$cov.data)

id.fam id.m id.f id.c sex.m sex.f sex.c cc.m cc.f
1 1 1 2 1 1 1 2 1 2
2 112 1 2 1 1 1 1 1 2
3 223 1 2 1 1 1 1 2 1
4 334 1 2 1 1 1 1 1 1
5 445 1 2 1 1 1 2 1 2
6 507 1 2 1 1 1 1 2 1

... cc.c env.m env.f env.c

... 2 1 3 1

... 1 2 3 2

... 1 3 3 1

... 2 2 2 1

... 2 3 1 3

... 2 1 1 3

Note that env_m is column 11

We need that to run haplinStrat
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QUICK PEEK AT THE INTERNAL DATA STRUCTURE

Useful to know (but not really necessary):

During pre-processing, all data are transformed to Haplin format

m-f-c format for all covariates and all genetic data

cov.data first contains all covariate data, read “raw”

During pre-processing, all cov.data is recoded and replaced by its

numerical codes.

Codes and frequency counts are stored in pres.data$aux$variables

> names(pres.data$aux$variables)
[1] "id.fam" "id.m" "id.f" "id.c" "sex.m" "sex.f"
"sex.c" "cc.m" "cc.f" "cc.c" "env.m" "env.f" "env.c"

> pres.data$aux$variables[["env.c"]]
1 2 3

192 190 177
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RUN haplin ON STRATIFIED DATA

haplinStrat runs haplin on each stratum of environmental variable.

You need to choose what stratification variable to use.

If you specify strata = "env" you will get env.c, i.e. the exposure of the

child.

Or you can specify manually by number. strata = 11 uses env.m, i.e.

the exposure of the mother.

Make sure your environment variable is specified correctly in the original file.

result <- haplinStrat(data = pres.data, markers = 1,
response = "mult", reference = "ref.cat",
use.missing = T, strata = 11)
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RUN haplin ON STRATIFIED DATA

## Running haplinStrat ##

Reading data from file...
Frequency distribution of selected stratification variable:

1 2 3
206 172 181

Running Haplin for full data file...Done
Running Haplin on stratum "1"...Done
Running Haplin on stratum "2"...Done
Running Haplin on stratum "3"...Done
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RUN haplin ON STRATIFIED DATA

The first element of result is for all data

The remaining elements are for each stratum

> names(result)
[1] "all" "1" "2" "3"

Plot all strata and dump to pdf

pdf(file = "strataplot.pdf")
lapply(result, plot)
dev.off()

Join to single haptable

result1 <- haptable(result)
----- OR:
result1 <- lapply(result, haptable)
result1 <- toDataFrame(result1, reduce = T)
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TABLE OF RESULTS

element marker alleles counts HWE.pv Original After.rem.NA
1 all rs1 c/G 146/3040 0.7075356 559 559
3 1 rs1 c/G 49/1127 0.3118923 206 206
5 2 rs1 c/G 44/934 0.9914135 172 172
7 3 rs1 c/G 53/979 0.7443079 181 181

After.rem.Mend.inc. After.rem.unused.haplos pv.overall haplos haplofreq
1 559 559 0.4733520 c 0.04181488
3 206 206 0.4907621 c 0.03416540
5 172 172 0.9058180 c 0.04446707
7 181 181 0.6683192 c 0.04795033

haplofreq.lower haplofreq.upper reference RR.est. RR.lower RR.upper
1 0.03107798 0.05593044 - 1.159908 0.7744188 1.756616
3 0.01977345 0.05793304 - 1.286377 0.6281270 2.685070
5 0.02640951 0.07371234 - 1.042735 0.5062032 2.190587
7 0.02941477 0.07677688 - 1.156227 0.5945482 2.288260

RR.p.value RRdd.est. RRdd.lower RRdd.upper RRdd.p.value
1 0.4684035 1.345387 0.5997245 3.085701 0.4684035
3 0.4873102 1.654765 0.3945435 7.209603 0.4873102
5 0.9010253 1.087296 0.2562417 4.798672 0.9010253
7 0.6630191 1.336860 0.3534876 5.236135 0.6630191
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TEST FOR GENE-ENVIRONMENT INTERACTION

We can test if there is change from stratum to stratum
Parameters tested for here, including trend tests:

1 Haplotype frequencies

2 Relative risk estimates

Testing:

gxe(result)

P-values from test:

gxe.test chisq df pval
1 haplo.freq 0.92303684 2 0.6303258
2 child 0.15885560 2 0.9236447
3 haplo.freq.trend 0.86293402 1 0.3529189
4 child.trend 0.04483292 1 0.8323116

No significant change in haplotype frequencies

No significant change in child effects
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GJERDEVIK ET AL. POOXE 2017
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PARENT-OF-ORIGIN EFFECTS
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PARENT-OF-ORIGIN EFFECTS

Parent-of-origin effect:
Interaction between allele effect and parent-of-origin

GxE:
Further interaction with environment

Non-smokers Smokers
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PARENT-OF-ORIGIN EFFECTS

Table 1: Examples

RS470563, ZNF236

Test effect Stratum RRcm RRcf RRcm/RRcf

POO effects
S1 0.952 1.073 0.888 (0.862, 1.339)
S2 0.952 1.073 0.888 (0.862, 1.339)

S1/S2 1 (-) 1 (-) 1 (-)

GxE effects
S1 1.155 1.155 1 (-)
S2 0.482 0.482 1 (-)

S1/S2 2.401 (1.472, 3.911) 2.401 (1.472, 3.911) 1 (-)

POOxE effects
S1 1.087 1.221 0.890 (0.655, 1.196)
S2 0.445 0.517 0.861 (0.387, 1.873)

S1/S2 2.444 (1.266, 4.749) 2.363 (1.253, 4.434) 1.034 (0.447, 2.424)

RS2964137, KIAA0947

Test effect Stratum RRcm RRcf RRcm/RRcf

POO effects
S1 0.707 0.936 0.755 (0.505, 1.111)
S2 0.707 0.936 0.755 (0.505, 1.111)

S1/S2 1 (-) 1 (-) 1 (-)

GxE effects
S1 0.802 0.802 1 (-)
S2 0.865 0.865 1 (-)

S1/S2 0.928 (0.538, 1.603) 0.928 (0.538, 1.603) 1 (-)

POOxE effects
S1 0.533 1.170 0.456 (0.290, 0.705)
S2 1.915 0.385 4.979 (2.137, 11.253)

S1/S2 0.278 (0.135, 0.576) 3.038 (1.446, 6.345) 0.092 (0.036, 0.236)

1

Håkon K. Gjessing (NIPH) Gene-environment interactions Norbis course, 4 Dec, 2020 34 / 34


