"Special effects" and X-models

WHICH ALLELE ESTIMATES WHICH EFFECT?

EFFECT OF MATERNAL HAPLOTYPES

- Haplotypes of three first SNPs
- Impute missing
- maternal = T includes effect of maternal haplotypes

```
haplin(data = pres.data, markers = 1:3, use.missing = T,
reference = "ref.cat", maternal = T)
```

EFFECT OF MATERNAL HAPLOTYPES

Maternal haplotypes:

- The effect of the mother's own haplotypes
- The haplotypes of the mother influence the fetus during pregnancy through the mother
- Often studied by comparing case mothers with control mothers
- But this is flawed: The haplotype is also often passed on to the child
- So the haplotype can have an effect either in the mother or in the child
- The models must thus distinguish between maternal haplotypes and child haplotypes

HAPLIN OUTPUT: EFFECT ESTIMATES, MATERNAL HAPLOTYPES

Child haplotypes								
Haplotype	Dose	Relative	Risk	Lower	CI	Upper (ΓI	P-value
c-A-a	Single	0.528		0.22		1.21		0.132
c-A-a	Double	4.5e+15		0		Inf		0.986
etc.								
Matern	al haplot	vpes						
Haplotype	Dose	Relative	Risk	Lower	CI	Upper (ΓI	P-value
c-A-a	Single	1.41		0.598		3.38		0.44
c-A-a	Double	0.000631		0		Inf		0.995
G-A-a	Single	0.833		0.576		1.21		0.329
G-A-a	Double	0.909		0.517		1.62		0.742
0.5.5	0:	0.000		0 400		0.01		0.0120
G-t-a	Single	0.626		0.433		0.91		0.0138
G-t-a	Double	1.4		0.676		2.93		0.364
C-4-T	Single	1 08		0 613		1 92		0 805
с-А-Т	Double	1.86		0.213		15 6		0.572
C M I	DOUDIC	1.00		0.210		10.0		0.012
G-A-T	Single	REF						
G-A-T	Double	0.858		0.575		1.27		0.46
G-t-T	Single	0.767		0.505		1.16		0.208
G-t-T	Double	0.928		0.365		2.39		0.877

Suggests a protective effect of haplotype ${\tt G-t-a}.$

But unlikely to survive multiple testing corrections.

HAPLIN OUTPUT: EFFECT ESTIMATES

HAPLIN OUTPUT: LIKELIHOOD RATIO TEST

LIKELIHOOD RATIO TEST:					
Loglike null model:	-2825.41339				
Loglike full model:	-2808.32255				
df:	22.00000				
Likelihood ratio p-value: 0.04707					

The likelihood test suggests something borderline.

Important:

• the Likelihood Ratio Test here applies to the combination of fetal and maternal genes

PARENT-OF-ORIGIN EFFECTS

- Haplotypes of three first SNPs
- Impute missing
- poo = T splits the fetal effects into maternal and paternal

```
haplin(data = pres.data, markers = 1:3,
use.missing = T, reference = "ref.cat", poo = T)
```

PARENT-OF-ORIGIN EFFECTS

Parent-of-origin effects:

- The effect of the fetal haplotype may depend on parent of origin
- Parental imprinting may silence (partially or totally) the haplotype deriving from either the mother or the father
- Compares the effects of the two alleles in the child
- Must distinguish between maternal haplotypes and child haplotype inherited from the mother

EFFECT ESTIMATES, PARENT-OF-ORIGIN

Haplin estimates:

- RRcm, the relative risk associated with an allele transmitted from the mother (Single-mat)
- RRcf, the relative risk associated with an allele transmitted from the father (Single-pat)
- The double dose effect of inheriting it from both (Double)
- The ratio RRR = RRcm/RRCF (Ratio m/p)

Interpretation:

- If RRcm = RRcf then RRR = RRcm/RRcf = 1
- This means no parent-of-origin effect
- If RRcm = 2RRcf then

RRR = RRcm/RRcf = 2

• This means there IS a parent-of-origin effect;

the risk is double when inherited from the mother (compared to from the father)

EFFECT ESTIMATES, PARENT-OF-ORIGIN

Child haplotypes						
Haplotype	Dose	Relative	Risk	Lower CI	Upper CI	P-value
c-A-a	Single-mat	0.741		0.288	1.88	0.528
c-A-a	Single-pat	0.22		0.0373	1.35	0.0978
c-A-a	Double	3.38e-07		0	Inf	0.988
c-A-a	Ratio m/p	3.33		0.512	21.3	0.208
G-A-a	Single-mat	0.812		0.546	1.2	0.302
G-A-a	Single-pat	0.788		0.522	1.19	0.253
G-A-a	Double	0.74		0.413	1.31	0.308
G-A-a	Ratio m/p	1.03		0.736	1.45	0.871
G-t-a	Single-mat	0.88		0.58	1.35	0.544
G-t-a	Single-pat	1.03		0.686	1.55	0.893
G-t-a	Double	1.85		0.883	3.88	0.109
G-t-a	Ratio m/p	0.853		0.562	1.29	0.466
c-A-T	Single-mat	1.36		0.698	2.66	0.372
c-A-T	Single-pat	1.27		0.645	2.47	0.493
c-A-T	Double	4.72		0.925	24.4	0.0634
с-А-Т	Ratio m/p	1.07		0.556	2.07	0.835
G-A-T	Single-mat	REF				
G-A-T	Single-pat	REF				
G-A-T	Double	0.8		0.538	1.18	0.259
G-A-T	Ratio m/p	REF				
etc.						

Perhaps a harmful effect of G-t-a in double dose. No signs of POO effects.

Håkon K. Gjessing (NIPH)

Special effects and the X

EFFECT ESTIMATES, *without* PARENT-OF-ORIGIN

Håkon K. Gjessing (NIPH)

Special effects and the X

Norbis course, 3 June 2022 12/26

EFFECT ESTIMATES, PARENT-OF-ORIGIN

HAPLIN OUTPUT: LIKELIHOOD RATIO TEST

LIKELIHOOD RATIO TEST:				
Loglike null model:	-2825.4134			
Loglike full model:	-2815.3111			
df:	16.0000			
Likelihood ratio p-value:	0.2111			

The likelihood test shows no significance overall.

Note:

• the Likelihood Ratio Test here is a test for overall fetal effects, *not* a parent-of-origin effect

HAPLIN RUN, X-CHROMOSOME

Load:

```
pres.data <- genDataLoad(filename = "data_preprocessed",
    dir.in = "data")
```

For the time being, there is no dedicated way to select the X-chromosome. Use the map file!

```
map <- read.table("data/pres.map", header = T)
X.chrom <- which(map$chr == 23)
head(X.chrom)</pre>
```

[1] 305 306 307 308 309 310

HAPLIN RUN, X-CHROMOSOME

X-chromosome run:

- Haplotypes of SNPs 2, 3, 4 on the X-chromosome
- Impute missing
- Important: Use xchrom = T to let haplin know!

haplin(data = pres.data, markers = 306:308, use.missing = T, xchrom = T, reference = "ref.cat")

HAPLIN OUTPUT: EFFECT ESTIMATES, X-CHROMOSOME

Relative risks for child haplotypes Single dose = "s". Double dose = "d". Ref = T-C-C. 4.00 2.00 Relative risk (log scale) 9. Ś REF 0.50 0.25 T-C-C (43.9%) a-g-C (3.1%) T-g-C (35.3%) T-C-t (17.6%)

Drew a blank ...

HAPLIN RUN, X-CHROMOSOME WITH MATERNAL AND POO

haplin(data = pres.data, markers = 306:308, use.missing = T, xchrom = T, maternal = T, poo = T)

Note:

- Maternal effects are measured as before
- Parent-of-origin effects are measured only in girls

HAPLIN OUTPUT: EFFECT ESTIMATES, X-CHROMSOME

Perhaps?

HAPLIN OUTPUT: EFFECT ESTIMATES, X-CHROMSOME

Child haplotypes					
Haplotype	Dose	Relative Ris	k Lower CI	Upper CI	P-value
T-C-C	Single-mat	REF			
T-C-C	Single-pat	REF			
T-C-C	Double	0.937	0.572	1.5	0.791
T-C-C	Ratio m/p	REF			
a-g-C	Single-mat	0.696	0.298	1.6	0.396
a-g-C	Single-pat	5.05	1.04	23.3	0.0444
a-g-C	Double	1.1	0.453	2.71	0.833
a-g-C	Ratio m/p	0.137	0.0248	0.795	0.0262
T-g-C	Single-mat	0.685	0.432	1.08	0.11
T-g-C	Single-pat	1.05	0.634	1.74	0.84
T-g-C	Double	0.796	0.454	1.37	0.411
T-g-C	Ratio m/p	0.649	0.396	1.07	0.0928
T-C-t	Single-mat	0.837	0.521	1.35	0.471
T-C-t	Single-pat	1.25	0.73	2.14	0.411
T-C-t	Double	0.855	0.466	1.57	0.607
T-C-t	Ratio m/p	0.665	0.372	1.22	0.19

Again, not very convincing considering the number of effects tested.

Håkon K	. Gjessin	g (NIPH
---------	-----------	---------

HAPLIN OUTPUT: EFFECT ESTIMATES, X-CHROMSOME

LIKELIHOOD RATIO TEST:			
Loglike null model:	-2225.37019		
Loglike full model:	-2212.94983		
df:	17.00000		
Likelihood ratio p-value: 0.09833			

Again:

• The LRT is an overall test of all effects included in the model

NO X-INACTIVATION. MULTIPLICATIVE DOSE-RESPONSE.

X-INACTIVATION. MULTIPLICATIVE DOSE-RESPONSE.

HAPLIN: A NOTE ON X-CHROMOSOME RESPONSE MODELS

- Default: comb.sex = "double"
 - Single dose in males equals double in females
 - I.e. corresponds to X-inactivation
- Alternative: comb.sex = "single"
 - Single dose in males equals single in females
- Alternative: comb.sex = "females"
 - Analysis performed only on females
- Alternative: comb.sex = "males"
 - Analysis performed only on males
 - response argument no effect

NOTE: All models assume different *baseline* risks for females and males

NO X-INACTIVATION, AND PARENT-OF-ORIGIN EFFECTS. MULTIPLICATIVE DOSE-RESPONSE.

X-INACTIVATION, AND PARENT-OF-ORIGIN EFFECTS. MULTIPLICATIVE DOSE-RESPONSE.

